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Abstract

Effective operators have emerged as a powerful framework for analysing the landscape of

neutrino mass models. In this thesis we expound three contributions to the framework: 1.

Highlight the challenges associated with generating consistent models from 11 dimensional

operators; 2. Outline several constraints on the general UV completion of these operators; and

3. Demonstrate how to exactly evaluate two loop integrals in the zero momentum rest frame.

Finally we verify the importance of using data from the Large Hadron Collider to set constraints

on neutrino mass models. We do this through a presentation of the ATLAS same sign dilepton

analysis, which is then used to set limits on the well known Zee-Babu Model.
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1 Introduction

1.1 The Problem of Neutrino Masses

As the Large Hadron Collider closes in on what appears to be a Standard Model Higgs boson, the

question of how the mass of the neutrino can be added to the canonical picture of mass generation

is more pertinent than ever. For even though the Higgs would complete the Standard Model (SM)

and give credence to the concepts of electroweak symmetry breaking and fundamental mass gen-

eration through interaction with a background �eld, the model cannot be an exhaustive picture of

reality. There are many well documented shortcomings, such as its incompatibility with gravity,

the hierarchy problem, the lack of a baryogenesis mechanism and the absence of a dark matter

candidate. Nevertheless neutrino masses represent a much more straightforward failing of the SM:

it predicts neutrinos to be massless, which is in stark contradiction with the evidence that has been

emerging since 1998 [1, 2, 3] that neutrinos have a small but non-zero mass. In essence the ex-

periments have observed neutrino oscillations, which occur when a neutrino changes its �avour

between where it is created and detected. This is a phenomenon only possible for massive par-

ticles. Theorists had contemplated the different ways the SM could be augmented to incorporate

neutrino masses even before this discovery and coming up with so called neutrino mass models has

become a small industry since then. Generically these models predict new particles that couple to

SM �elds. Such particles can be searched for at colliders using the data emerging from the Large

Hadron Collider (LHC), which is complementary to the constraints from oscillation data or rare

processes like neutrinoless double beta decay (ββ0ν).
In order to stay on top of all of these models, Babu and Leung have introduced the concept

of effective operators as a structure existing above individual models and a way to approach the

generation of such models systematically [4]. This concept has been built upon by de Gouv�ea and

Jenkins [5] and most recently Volkas and Angel [6]. The focus of this thesis will be on contributing

to the effective operator literature and more speci�cally looking into how data emerging from the

LHC can be exploited to constrain such models. The thesis will be structured as follows. In

this section we provide a review of the effective operator concept. In section 2 we describe an

incomplete attempt to rule out higher dimensional operators and outline several challenges with

creating consistent models from such operators. In section 3 we document a number of constraints

on the general UV completion of effective operators. In section 4 we describe how one neutrino

mass model, the Zee-Babu Model, was tested using 7 TeV ATLAS data. Appendix A and B contain

a summary of how to calculate two loop integrals. Finally appendix C provides a short summary of

a side project completed on time symmetric Quantum Field Theory (QFT) and Hawking Radiation.

1.2 Introduction to Neutrino Mass Models

1.2.1 Technical Aspects of Mass Generation

Before describing how mass models can be categorised into effective operators, it is worth review-

ing the problem in a more technical setting. As outlined above the existence of neutrino masses

presents a problem for the SM that is simple enough to state: neutrino mass exists and it is small.
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Accordingly the task for any mass model is to provide a mechanism for mass generation and fur-

thermore a natural explanation for why the mass is so small.

This second point is worth stressing. Naively one might not think there is that much of a

problem. Experimental evidence suggests the mass of the heaviest neutrino can be at most of order

1 eV, which is around six orders of magnitude lighter than the next smallest fermion, the electron

at 0.511 MeV. But the top quark at roughly 174 GeV is almost six orders of magnitude larger again

and we generally put the difference between the electron and top down to a difference in couplings

to the Higgs; why can the same not be true for neutrinos? The neutrino case is different for at least

two reasons. Firstly it is not just one neutrino which is that much lighter, but all three. While this

may be a coincidence, it would be preferable if our models could explain it. Secondly there is a

technical reason why it is arti�cial to write down a mass term for the neutrinos in the same way we

do for the other fermions. To understand this we have to consider the different ways fermions can

be given masses.

Lorentz invariance allows chiral fermions to acquire mass in two ways. Firstly we can write

a Dirac mass term, which for a fermion ψ is usually denoted by mψLψR. This is how fermions

acquire mass in the SM. For example, the electron acquires mass through the term HLLeR, which
gives rise to a Dirac mass term once the Higgs �eldH acquires a vacuum expectation value (VEV).

Such a mass is not possible for the neutrino in the SM as the neutrino only enters as νL in the lepton

doublet L - there is no νR to complete a Dirac mass term. The second possibility is a Majorana

mass, which is written as mψc
LψL. Note ψ

c ≡ Cψ
T
where C is the charge conjugation operator.

Again in the SM this is not allowed as such a term for νL has to be written using L and would violate

hypercharge. Indeed the only way such a term would not violate hypercharge is if Y (ψ) = 0. In
general a Majorana mass term will violate any U (1) quantum numbers carried by ψ and this implies

that such a term for the neutrino must violate lepton number by exactly two units.

The failure of either mechanism to work for the neutrino in the SM shows us why it predicts

no neutrino mass at the �rst order of perturbation theory or tree level. The reason why the SM

predicts a zero neutrino mass at all orders is because it exactly conserves lepton number; the black

box theorem [7, 8] proves that models that violate lepton number induce a neutrino mass at some

order and vice versa.

1.2.2 Type I Seesaw Model

We have seen above why there cannot be a neutrino mass in the SM. Nevertheless it has also given

us insight into how we might go about modifying the model to include it. If we wanted a Dirac

mass term for the neutrino then we need to introduce a right handed neutrino νR and furthermore

in order for the mass term to be gauge invariant it is not hard to see that it must transform under

the SM gauge group SU (3) ⊗ SU (2)L ⊗ U (1)Y as νR ∼ (1, 1, 0). The surprising feature of such

a particle is that its transformations are such as to allow a gauge invariant Majorana mass term to

be written down for νR. The golden rule of model building is that all gauge invariant terms should

be included unless forbidden by a symmetry. Of course adding such a term would break lepton

number symmetry, but as this only arises as an accidental symmetry in the SM it does not seem

unreasonable to break it in favour of adding an additional gauge invariant term. Accordingly as
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soon as we try to give the neutrino a Dirac mass we are almost compelled to give νR a Majorana

mass. This is the technical dif�culty alluded to above - unless one insists on maintaining lepton

number as a symmetry of the SM, there is no way to simply give the neutrino just a Dirac mass like

the other fermions.

Adding both terms above leads to the following addition to the SM Lagrangian

L ⊃
(
λνH

cLνR + h.c.
)
+MνcRνR, (1.1)

where λν is the Yukawa coupling for the neutrino andM is the Majorana mass of νR. Interestingly
M is not protected by a gauge symmetry (there is nothing like a Higgs coupling that would suggest

it should be related to the electroweak scale) and so there is no reason it cannot be much larger than

other fermion masses.

What we have just written down is the Lagrangian of the Type I Seesaw Model [9, 10, 11, 12],

which is seen by many as the leading candidate for neutrino masses. To see where it gets its name,

observe that after expanding around the Higgs VEV v and settingm = λνv equation (1.1) gives the
following mass matrix:

1

2

(
νL νcR

)( 0 m
m M

)(
νcL
νR

)
, (1.2)

which when diagonalised yields two mass eigenvalues, m2/M and M . Increasing the value of

heavier mass decreases the mass of the lighter one, which is where the model gets its name. As

noted M can be huge and thus this model provides a natural explanation for the small observed

neutrino mass. It owes its popularity to both its simplicity and the fact it is the �rst route one

would consider when trying to give the neutrino a mass. It also appears as a natural consequence

of many extensions of the SM such as the left-right symmetric model [13, 14, 15, 16] or SO(10)
GUT theories [17]. The downside is that a �t to current data requires M ∼ 1011 TeV - a mass

well beyond the reach of foreseeable experiments, making this model essentially impossible to test

directly.

1.2.3 From Seesaws to Effective Operators

The Type I Seesaw is only the starting point of the landscape of neutrino mass models. In a some-

what similar manner, augmenting the SM with a scalar triplet Φ ∼ (1, 3, 2) or a fermion triplet

fR ∼ (1, 3, 0) instead of νR, a seesaw type mechanism can again be induced yielding what is

known as the Type II [18, 19, 20, 21, 22, 23] and III [24] Seesaw Models respectively. These may

not be as compelling as the Type I, but they predict new physics at lower energy scales and are in

fact both being searched for directly at the LHC. Rather than going through the details as we did

for the Type I, a convenient way to visualise what is going on here is to draw the Feynman diagram

that generates the Majorana neutrino mass in these models. This has been done in Figure 1.1.

As soon as these diagrams have been written down we can see there is a manifest similarity

between all three models, namely the LLHH structure which has been highlighted. The only

difference between them is the new particles that connect the external structure - more speci�cally

they differ only in their ultraviolet (UV) completion. Given that νR, Φ and fR have not been
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Figure 1.1: Type I (left), II (centre) and III (right) Seesaws with common structure highlighted.

experimentally observed it is reasonable to posit that if they do exist they will have masses well

above L or H . Accordingly we can integrate out the new physics, which leads to the generic

structure seen in Figure 1.2.

H

L

H

L

Figure 1.2: A common thread between the Seesaw Models - O1.

This non-renormalizable vertex is referred to as O1 in the literature, as it is the �rst effective oper-

ator in the language of Babu and Leung's paper. It is usually written as

O1 = LiLjHkH lεikεjl, (1.3)

where Roman letters are used to denote SU (2) indices. Written like this it is clear O1 is just the

Weinberg operator [25]. The fundamental idea is that O1 is an abstraction that sits on top of the

Seesaw Models. It contains the key details for neutrino mass generation - speci�cally it breaks

lepton number by two units - but does so at the cost of knowing the speci�c phenomenologies of

individual models. Not all models will be able to be integrated back toO1. In fact the vast majority

of neutrino mass models are quite different from the Seesaw Models seen above. It can be shown

that these are the only possible tree level models; all remaining models induce a Majorana mass

for the neutrino at one or more loops. Such models rely on the loop suppression to explain the

smallness of the neutrino mass rather than a seesaw type mechanism.

It should be noted that the concept of effective operators is not a new one and is in fact equiv-

alent to the notion of effective theories, the classic example being Fermi's four fermion model.

Figure 1.3 below hopefully clari�es the concept of effective operators - the idea is that at energies

well belowMW the propagator can be integrated out and the physics can be well described by the

non-renormalizable vertex udνe.
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Figure 1.3: Fermi's four fermion operator (left) and its UV completion (right).

1.3 Effective Operators as a Systematic Approach to Neutrino Mass

The true utility of effective operators, however, is that they can be used in the taxonomy of neutrino

mass models. This was the insight in Babu and Leung's original paper: effective operators rather

than individual models should be the starting point. The reason is that they showed there is actually

only a �nite number of neutrino mass effective operators. This allows one to systematically work

through the different operators and consider which are constrained or ruled out by experimental

data. In this way, even if the Type I Seesaw is the model nature chose for neutrino mass, it can be

given substantial indirect evidence if the alternatives can be ruled out.

The original list contains 75 different operators, all of which can be generated from a simple

recipe. To begin with the operator cannot break baryon number - it must have ∆B = 0. If it did it
would give rise to models that contain proton decay or other processes that are highly constrained

by experimental data. These constraints would force the couplings to be so small that the model

could not generate a neutrino mass consistent with the atmospheric neutrino oscillation data, which

shows at least one neutrino must have a mass greater than 0.05 eV [2]. In addition, to generate

a Majorana neutrino mass the operator must have ∆L = 2 (break lepton number by two units).

For example in O1 this is done by LL. Then one can add additional groups of SM �elds with

∆L = ∆B = 0 as long as the operator stays below mass dimension 13.

This �nal point on the dimension was the crucial step in Babu and Leung's paper as it implies the

list is �nite and it is worth summarising their argument. In QFT all Lagrangian terms must have a

mass dimension of four on dimensional grounds. Furthermore it can be shown that the �eld content

of renormalizable terms must have dimension of at most four. This is not true of the effective

operators because they are not a full description of what is going on - the high energy degrees

of freedom have been integrated out. Nevertheless the high energy effects cannot be completely

disregarded as they suppress the couplings of the effective interactions. For example Fermi's four

fermion theory has a 6D interaction and to get this back to a 4D Lagrangian term the coupling

constant must have dimension -2. Indeed we know thatGF ∝ m−2
W . More generally an nD effective

operator will be suppressed by (n-4) dimensions of the scale of the physics that has been integrated

out. In addition it is hard to hide the new degrees of freedom from neutrino mass models as

they generically couple to SM fermions, especially leptons. Accordingly their non-observation at

colliders implies they must be heavier than about 100 GeV. Babu and Leung showed that for 13D

operators, the (100GeV)-9 suppression prevents these models from being able to predict a 0.05

eV neutrino mass as required from atmospheric data. In this way they were able to show the 75
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operators outlined in their paper were the only ones possible. The list contains 1 5D (O1), 7 4D, 15

9D and 52 11D operators, with all except for O1 containing 4 or 6 fermions.

Subsequent to this de Gouv�ea and Jenkins provided an order of magnitude approximation of the

best way to experimentally test different operators, for example through looking for new particles

at the LHC or alternatively through rare processes like ββ0ν and lepton number violating decays

such as µ → eγ. One of the results they provided that we will draw on in this thesis is that

for each operator they determined an approximate scale of the new physics involved. To do this

they approximated the neutrino mass allowed by an operator in the following way: include a loop

suppression of (16π2)
−n
, where n is the smallest number of loops the operator can be closed off

in; include any SM masses the operator structure would introduce; and �nally divide by the scale

of new physics, Λ, required by the operator (e.g. 5D requires 5-4=Λ1, or 11D requires 11-4=Λ7).

Then they set this formula equal to the atmospheric limit and extracted a value for Λ. In their paper
they also showed that a number of the operators are already highly disfavoured by existing data.

The next development came in the recent work of Volkas and Angel. There they provided a

general procedure for how to generate one and two loop models from a given operator. Note that

although it has not been rigorously proven yet, it is generally assumed that three loop models would

suppress the masses too greatly to �t the atmospheric limit. This work is crucial to the analysis of

individual operators, as one can write down all models a given operator can give rise to and analyse

their phenomenology in detail.

It would not be practical to fully outline their procedure here - it should be clear from the

example of O1 above that a single operator can give rise to many models. In short they provide an

exhaustive list of all possible UV completions for four and six fermion operators. One of their most

interesting results is that they were able to show that 25 operators cannot be closed in two loops

or less. As stated above three loops is highly disfavoured and as such so are these operators. The

operators this rules out are 15-20, 34-38, 43, 50, 52-60, 65, 70 and 75. Interestingly de Gouv�ea

and Jenkins' analysis suggests an even larger class of operators would be ruled out this way. This

discrepancy is addressed in section 2.

As section 2 and 3 of this thesis will draw extensively on their method for opening up the six

fermion operators, a brief outline is provided here. To begin with the starting point is a vertex with

six fermions and potentially several Higgs. The next step is the UV completion, for which there are

several options. The simplest of these is to just use scalars in the UV completion as seen on the left

of Figure 1.4.

Note that the direction of the scalars in the diagram is arbitrary. The next step is to close off

the external fermions in a way that provides a valid Majorana neutrino mass diagram - which has

the generic structure of two external neutrinos. As discussed by Volkas and Angel, this cannot be

done by putting two L �elds at the same vertex as this would induce the Type II Seesaw Model

(compare Figure 1.1 centre) and as this is a tree level process it would dominate over the two loop.

Accordingly the L �elds must be at different vertices and then the unique closure is shown on the

right of Figure 1.4.

There are a few points worth commenting on in this diagram. To begin with the reason for the

external LcL rather than LL is that the matrix structure of the latter term does not make sense;

it is simply a convenient shorthand. Despite this, sometimes in the literature these diagrams are
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Figure 1.4: Scalar UV completion (left) and closure (right) of six fermion operators.

depicted with two L �elds, see e.g. Figure 1.1, but the two are interchangeable. Secondly the way

the fermion lines have been closed must be appreciated as a shorthand. There are two possible

ways of closing off the SM �elds from the original operator: 1. Connect a �eld to its adjoint, e.g.

a uu coupling; or 2. Connect �elds through a Higgs coupling, e.g. QdH , where the Higgs is then

replaced by its VEV. In Figure 1.4 only the former has been drawn, but this is a shorthand for either

possibility.

The only other possible modi�cation of this scalar UV completion is to use Higgs �elds from

the operator to avoid inducing the Type II Seesaw when the L �elds are at the same vertex. An

example of this is shown below.

L L
c

H H

Figure 1.5: Second scalar UV completion.

The other way to UV complete six fermion operators is with an exotic fermion. There are �ve

different ways such diagrams can be closed as shown in Figure 1.6 where Volkas and Angel's

naming procedure was used. Diagram C and D2 may initially look somewhat different from the

others, but this is because we have drawn them in a simpler, but topologically equivalent way to

how they were drawn by Volkas and Angel.

This exhausts the different possibilities for diagrams from six fermion operators. There are

some extra features that can be added by placing Higgs in various positions, as discussed by Volkas

and Angel, but there are no extra diagrams. With all the ingredients in place we can now give a

concrete example of how to move from an operator to a model. Consider the following operator:

O9 = LiLjLkecLlecεijεkl , (1.4)
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(a) Diagram A (left), B (centre) and C (right)

L
c

L
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(b) Diagram D1 (left) and D2 (right)

Figure 1.6: Central Fermion UV completions.

this can be UV completed with scalars and then closed off using Higgs couplings as in Figure 1.7.

The two loop model on the right is in fact the well known Zee-Babu Model (ZBM) that was dis-

covered well before the effective operator analysis [26, 27]. This model will be used as a test case

for how LHC data can be used to constrain such models in section 4.

L L

LL

e
c

e
c

L L

LL

e
c

e
c

L LLL

H H

e
c

e
c

h h

k

Figure 1.7: O9 (left), with one possible UV completion (centre) and the closed two loop model

(right).

The real utility of Volkas and Angel's analysis is that they exhaust the possible UV completions

and therefore it becomes possible to systematically write down all models from a given operator.

Although the process looks relatively straightforward, in attempting to come up with two models

based on 11D operators a number of unexpected complications arose, including a number of general

constraints on their analysis. These constraints are detailed in section 3, but before looking at them

we turn our attention to 11D effective operators.
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2 Analysis of 11D Effective Operators

As discussed, Babu and Leung concluded that 13D operators generate neutrino mass models that

are inconsistent with current experimental data. Nevertheless this conclusion was reached in 2001;

improvements on precision data since then and especially the results now emerging from the LHC

may mean that the same argument can be extended to exclude 11D operators. This would rule out

a large class of operators and when combined with the removal of operators that Volkas and Angel

observed cannot be closed in two loops or less, there would only be 14 remaining possible operators

from which a Majorana neutrino mass model could emerge. This would make the class of effective

operators small enough that it would become feasible to write down all minimal models that could

generate neutrino mass and test them one by one.

In order to test this hypothesis we decided to construct models from two arbitrary 11D operators,

O68b and O31a , in the hope that we could see if they were ruled out by existing data and if so

generalise such arguments to other 11D operators. What we ultimately found is that it is much

harder than originally thought to construct consistent 11D models - such models generically induce

a neutrino mass associated with a lower dimension operator, making it impossible to study the 11D

structure in isolation. This last point will be clari�ed through the analysis of the two models below.

As an aside one of the main pieces of work involved in analysing these models was an exact

evaluation of their mass matrices, which required an exact determination of their associated two

loop integrals. The details of these calculations are lengthy and so have been relegated to appen-

dices A and B. Traditionally neutrino mass models evaluate the mass matrix by assuming several

hierarchies to simplify the calculation, for example mnew � mSM , see e.g. [6]. Often there are

also assumptions as to hierarchies within the new particle masses. But in order to test models using

LHC data, it is important to understand the implications of the new masses being at the TeV scale,

and then it becomes highly unrealistic to �t several hierarchies between these and mtop = 174

GeV for example. Accordingly to facilitate LHC testability these calculations were done without

approximations.

2.1 A Model from O68b

In this section we use Volkas and Angel's procedure to develop a model fromO68b . It was chosen as

de Gouv�ea and Jenkins suggest it has a low associated scale of new physics - around 100 TeV. This

energy assumes couplings of order unity; more realistic couplings would require smaller masses.

Naively this would suggest models from this operator could be signi�cantly constrained through a

non-observation of their particles at the LHC. Note thatO68b was chosen rather than operators with

lower orders of new physics that can be closed in two loops, such as O26b , by accident. This arose

as initially O68a was used, until it was realised the (Li)cLjεij contraction makes it impossible to

have two external neutrinos without introducing a gauge boson and thus an extra loop. The operator

itself has the following form:

O68b = LiLjQkdcH lQrdcHrεikεjl, (2.1)

which as discussed is a shorthand for the full structure which can be viewed as:
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O68b =
[
(Li)cQkεik

] [
dLjH lεjl

] [
dQrHr

]
, (2.2)

where the SU (2) structures have been grouped. Note that in making this rearrangement we made

use of the identity ψχc = χψc.

Now this is a six fermion operator, so it can be converted into a model using one of the UV

completions discussed in the introduction. For this purpose diagram B (see Figure 1.6) was used.

An interesting feature that was discovered in the process of coming up with this model was that the

choices of which diagram to use and the placement of the Higgs were not entirely arbitrary. Certain

choices will in fact lead to either invalid diagrams, a two loop that actually generates a mass at one

loop or a model that fails for some other reason. These results are collected in section 3.

2.1.1 Overview of the Model

Using diagram B we generated the diagram seen in Figure 2.1. It is worth highlighting that this

model has been chosen as just a general model coming from O68b . It is not well motivated by, for

example, grand uni�cation or some new symmetry and as such there is no reason it should not look

as ugly as it does.

d

d

Q

Q

Lc L

f1R

f2L

φ1

H H

H

H

φ2 φ3

Figure 2.1: A model generated from O68b .

As can be seen from the diagram, this model introduces �ve new �elds with three scalars and two

fermions. The quantum numbers of these new �elds were determined using three principles: 1.

Requiring gauge invariance at each vertex; 2. Ensuring the SU (2) structure of equation (2.2) is

maintained (e.g. that H and Q are `SU (2) connected', which implies φ2, φ3 and f2L cannot be

weak isospin singlets); and 3. Choosing remaining freedoms so as to minimise the number of new

couplings.

11



Point three is worth elaborating on. The �rst two principles are required for the validity of the

model, but generally are not enough to entirely �x all quantum numbers. For example it is not

hard to see that for this model these will not be able to determine whether φ2 transforms under

the singlet or adjoint representation of SU (3). Nevertheless when determining the full Lagrangian

for the model, one must consider all possible gauge invariant combinations of SM and new �elds,

which must be done systematically to ensure no terms are missed. Extra Lagrangian terms will

complicate the model: they can lead to an induced one loop model that will dominate over the

two loop, lead to new two loop models that will interfere with the original diagram or potentially

introduce baryon number violation into the model. Accordingly whilst the most general model will

contain such terms, in order to make the problem more tractable it is wise to restrict such terms

with a judicious choice of the quantum numbers. Applying these principles to this model yields:

φ1 ∼ (3, 3,−2/3)
φ2 ∼ (8, 2,−1)
φ3 ∼ (8, 3, 2)

f1R ∼ (3, 4,−5/3)
f2L ∼ (3, 3,−8/3)

(2.3)

From here we can now write down the most general Lagrangian for this model, which will be made

up of the following parts:

L = LSM + Lnew
kinetic + Lnew

ν + Lnew
scalar + Lnew

extra + Lnew
fermion, (2.4)

where each term will be explained below. LSM is the SM Lagrangian and Lnew
kinetic contains the

additional kinetic terms for the new �elds (i.e. (Dµφ)
† (Dµφ) for scalars and if /Df for fermions).

Lnew
ν contains the new terms required by the neutrino mass matrix in Figure 2.1 and is given by:

Lnew
ν = g1abL

c
aQbφ1+g

2
cddcQdφ2+h

1
edef2Lφ3+h

2
ff1RLfφ1+λf2Lf1RH+µ23φ2φ3H+h.c., (2.5)

where lower case Roman indices from the start of the alphabet denote generations (not to be con-

fused with the charge conjugation operator), g, h and λ are dimensionless couplings, and µ23 carries

dimensions of mass. Note that we have here assumed there is only a single generation of the new

�elds, but this could be trivially extended to multiple generations. Next Lnew
scalar contains the addi-

tional terms gauge invariance allows in the scalar potential given by:

Lnew
scalar =

3∑
n=1

[
αn

(
φnφn

)2
+ βn

(
φnφn

) (
HH

)
+m2

Sn

(
φnφn

)
+
{
γn

(
φnφn

)
(φ2H) + h.c.

}]
+ δ12

(
φ1φ1

) (
φ2φ2

)
+ δ13

(
φ1φ1

) (
φ3φ3

)
+δ23

(
φ2φ2

) (
φ3φ3

)
+
(
ε23φ2φ2φ3 + εHφ2Hφ3 + h.c.

)
,

(2.6)

where mSn, ε23 and εH have dimensions of mass, with other couplings being dimensionless. In

addition to ensure there are not one loop diagrams induced it is convenient to not allow any of the

new scalars to pick up a VEV. Taking m2
Sn > 0, this means we require αn > 0 also. Similarly

Lnew
extra contains the extra terms allowed involving fermions and contains:
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Lnew
extra = κ1f2Lf1Rφ2 + κ2ghQguhφ2 + κ3iQif1Rφ3 + h.c., (2.7)

where the κs are dimensionless couplings. Notice that most couplings arise from φ2 which, except

under SU (3), transforms like the Higgs. This is a general feature: introducing new �elds with

quantum numbers similar to SM �elds will lead to a large number of couplings and thus potential

one loop and two loop diagrams. Such features generically make these models more dif�cult to

work with. Finally Lnew
fermion contains the mass terms for the new fermions. Their non-observation

would suggest that mfermion � melectroweak. Accordingly rather than giving them a mass through

a Higgs coupling, it is more natural to make them vector-like fermions. This implies introducing an

f1L and f2R that transform identically to f1R and f2L respectively. Then the mass term is simply:

Lnew
fermion =

2∑
n=1

mFnfnfn, (2.8)

where fn = fnL+ fnR. With the full Lagrangian in place there are now a few additional features of

the model we can check. Firstly it can be shown the Lagrangian has no new global symmetries that

are independent of baryon number and hypercharge. Next choosing φ1, f1 and f2 to carryB = 1/3,
whilst φ2 and φ3 carry no baryon number we �nd that this model exactly conserves baryon number,

so this model will not be subject to constraints like those from proton decay. On the other hand the

model must violate lepton number to generate a Majorana neutrino mass and indeed with a choice

of φ1 to have L = 1 and all other new �elds to carry no lepton number, we �nd that the only term

that breaks lepton number is h2ff1RLfφ1 and this has ∆L = 2. Note that it is incorrect to think of

this term as the source of lepton number violation in this model, as other terms were used to set the

lepton numbers of the new �elds, in truth it arises from the full Lagrangian.

The �nal check is whether this model allows additional Majorana neutrino mass diagrams.

From the above it is clear any such diagram must include the h2f term as this is the only way it can

satisfy the∆L = 2 requirement. Now the only other coupling for φ1 in the model is the g1abL
c
aQbφ1

term as featured in the original diagram. If there were a one loop diagram there would have to

be a way of connecting Q and f1R without using scalars other than the Higgs. This is because

Higgs lines can be replaced by their VEV, whilst other scalar lines cannot by construction and

could only be closed off through another loop. A Higgs coupling will allow one to convert Q to d
and f1R to f2L, but there is no combination of these that can be connected in a Higgs. Thus we can

conclude this model has no induced one loop contribution to neutrino mass. By a similar type of

argument where all the possible couplings are considered, it is not hard to show that there is in fact

an additional two loop diagram - but only one - and it is shown in Figure 2.2.

In summary we have outlined the details of an extension to the SM with �ve additional �elds,

where the neutrino picks up a Majorana mass at two loops according to the interference of two

diagrams. The model is likely to have interesting LHC phenomenology. For example φ1 is a

leptoquark, coupling to leptons and quarks, and this type of particle is being looked for in the data

[28]. Nonetheless before considering the details of experimentally testing this model, we must

check that the neutrino mass is consistent with atmospheric limits and furthermore is what we

expect from this operator.
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Q
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f1R
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H

H

φ2 φ3

Figure 2.2: An independent two loop diagram.

2.1.2 Evaluating the Mass Matrix

To begin with observe that the generic radiative neutrino mass diagram can be visualised as in

Figure 2.3, where the grey circle represents the loop structure. Now the induced coupling between

Lc
a and Lb by such a diagram can be written as Lc

aPLMabLb, where a and b are generation indices,
PL emerges from the chirality structure of the �elds, and Mab is the neutrino mass matrix for this

diagram. Accordingly to calculate this matrix from a diagram we need to to ignore the external L
�elds and calculate the Feynman amplitude of the internal loop structure.

L L
c

Figure 2.3: Generic radiative neutrino mass diagram.

Applying the Feynman rules to the �rst diagram (Figure 2.1) yields:

PLM1
ab =

∫
d4p

(2π)4

∫
d4q

(2π)4
(g1acPL)

i(/p+mc)
p2−m2

c
(g2cdPL)

i([/p−/q]+md)
(p−q)2−m2

d

(h1dPL)

× i(/p+mf2)
p2−m2

F2
(vλPR)

i(/p+mf1)
p2−m2

F1
(h2bPL)

i
p2−m2

S1

i
q2−m2

S2
(vµ23)

i
q2−m2

S3
,

(2.9)

where we have called the generation of the down-type quark on the left c and the one at the top

d, the momentum in the lower loop is p and in the upper loop is q, and the integrals run over all

possible momenta (i.e. −∞ to∞).

Now we can rearrange (2.9) by commuting the projection operators through, performing aWick

rotation, sending q → −q, and using /p/p = p2 to get:
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PLM1
ab = PL

iv2

(2π)8
mcmdg

1
acg

2
cdh

1
dh

2
bλµ23

∫
d4p

∫
d4qp2 1

p2+m2
c

× 1
p2+m2

F1

1
p2+m2

F2

1
p2+m2

S1

1
q2+m2

S2

1
q2+m2

S3

1
(p+q)2+m2

d

(2.10)

From here it is clear that M1
ab is just the parts on the right except for PL and that the remaining

work is in calculating the integral, which we label as I1cd. The exact details of how to calculate such

integrals and the notation used below is outlined in appendix A and these techniques yield:

I1cd = m4
S1ACDG [(2mS1|mS3|md)− (2mS1|mS2|md)] +m4

F2ABCF [(2mF2|mS2|md)− (2mF2|mS3|md)]
+m4

F1ABDE [(2mF1|mS3|md)− (2mF1|mS2|md)] +m4
cAEFG [(2mc|mS2|md)− (2mc|mS3|md)]

+m2
S1ACDG

[
−m2

S2 (2mS2|mS1|md)−m2
d (2md|mS1|mS2) +m2

S3 (2mS3|mS1|md) +m2
d (2md|mS1|mS3)

]
+m2

F2ABCF
[
−m2

S3 (2mS3|mF2|md)−m2
d (2md|mF2|mS3) +m2

S2 (2mS2|mF2|md) +m2
d (2md|mF2|mS2)

]
+m2

F1ABDE
[
−m2

S2 (2mS2|mF1|md)−m2
d (2md|mF1|mS2) +m2

S3 (2mS3|mF1|md) +m2
d (2md|mF1|mS3)

]
+m2

cAEFG
[
−m2

S3 (2mS3|mc|md)−m2
d (2md|mc|mS3) +m2

S2 (2mS2|mc|md) +m2
d (2md|mc|mS2)

]
,
(2.11)

where we use the shorthand A = (m2
S2 −m2

S3)
−1
, B = (m2

F1 −m2
F2)

−1
, C = (m2

F2 −m2
S1)

−1
,

D = (m2
F1 −m2

S1)
−1
, E = (m2

c −m2
F1)

−1
, F = (m2

c −m2
F2)

−1
, and G = (m2

c −m2
S1)

−1
.

One can check this combination of integrals is convergent and accordingly integrals of the form

(2m|m1|m2) should be replaced with their effective parts, as explained in appendix A.
Repeating the same process as above for the second diagram (Figure 2.2), we �nd:

PLM2
ab =

∫
d4p

(2π)4

∫
d4q

(2π)4
(g1acPL)

i(/p+mc)
p2−m2

c
(g2cdPL)

i([/p−/q]+md)
(p−q)2−m2

d

(κ3dPR)

× i(/p+mF1)
p2−m2

F1
(h2bPL)

i
p2−m2

S1

i
q2−m2

S2
(vµ23)

i
q2−m2

S3

(2.12)

= PL
−v

(2π)8
g1acg

2
cdκ3dµ23mc

∫
d4p

∫
d4q (p2 − p · q) 1

p2+m2
c

× 1
p2+m2

F1

1
p2+m2

S1

1
q2+m2

S1

1
q2+m2

S3

1
(p+q)2+m2

d

(2.13)

The integral here has two parts; label the one with p2 in the numerator as I2Acd and the one with−p ·q
as I2Bcd . The �rst of these integrals can be evaluated using the techniques from appendix A. This

was done, but the result is as long and ungainly as (2.11) so it is not presented here. The second

integral cannot be evaluated in this manner. Whilst the numerator is odd, this does not imply the

integral will vanish like it would for one loop integrals because the denominator is neither even nor

odd due to the coupled (p+ q)2 propagator. We have evaluated I2Bcd in appendix B.

Although this is mentioned in the appendix it is worth repeating that an important step in these

calculations is determining whether the integrals converge. In this case I1cd and I
2
cd are convergent

separately and this is because the two diagrams involve different couplings, which implies their di-

vergent terms are linearly independent and so must cancel separately. Of course this will not always

be the case. If two different diagrams have the same couplings it may require the combination of

both to check all divergences cancel. Either way convergence works not only as a necessary step

but is also a good check that the algebra has been calculated correctly.
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2.1.3 Numerical Evaluation of the Mass

With an analytic expression for the integral we can put this into Mathematica and �gure out the

predicted neutrino mass, mν = |M1
ab + M2

ab|. Given this is a model from an 11D operator the

atmospheric limit of 0.05 eV may be problematic. To get the biggest mass out of our model we

take the mass of the down type quarks to be the bottom mass ≈ 4.2 GeV.

Before getting a value, however, we still need to �x the coupling constants. In truth these

couplings will be constrained by non-observation of rare processes like ββ0ν or µ → eγ, yet at
this stage we have not considered such limits in detail. Nevertheless it seems these constraints

generically require most couplings to be between 0.1 and 0.01, see e.g. [29]. Accordingly at this

�rst stage we take all couplings to be 0.1. The only exception is the massive coupling µ12, which we

take to be 0.1 times the average ofmS2,mS3 andmHiggs. We can now reasonably use experimental

values for the last number of around 126 GeV [30, 31].

Now taking all new particles to be of order 100 TeV (the masses cannot be degenerate or the

analytic expressions diverge) we �nd mν ∼ 0.1 eV, which is in no danger of the atmospheric limit

as we can always increase the couplings. This is higher than expected as de Gouv�ea and Jenkins'

analysis suggested that for O68b to �t the atmospheric limit, the new particle must have masses

around 100 TeV with all couplings assumed to be around unity. Indeed taking couplings of order 1

the model can supportmν ∼ 1 eV even with all new particles around 106 TeV.

To try and determine what is going on here we isolated the different contributions to the mass

and quickly realised that on essentially the entire parameter space M2 � M1. For example when

all new particles were around 1 TeV, M2 ∼ 10 eV, whilst M1 ∼ 10-6 eV. Despite this if we take

couplings of order 1 along with TeV masses, then we getM1 ∼ 0.1 eV, which is much more in line

with their suggestion. It seems that the second diagram, which was required for the consistency of

our model, has made the original diagram ignorable as far as neutrino mass is concerned. We will

try and understand this problem in the next section.

2.1.4 Analysing the Large Mass Problem

The above realisation calls for a careful consideration of this second diagram. Looking carefully

back at Figure 2.2, note that if we treat theQdH line on the left as a single d line - not unreasonable
given this is how it is treated in the Feynman amplitude - we see that when we integrate out the new

physics, the diagram reduces to an operator other than O68b . Speci�cally it reduces to:

O3 = LLQdcH (2.14)

where we have left out the SU (2) indices as it is impossible to distinguish between the different

possibilities just from this diagram. de Gouv�ea and Jenkins list the scale of new physics for O3

as between 105 and 108 TeV, but this was assuming a one loop model. If we add a further 16π2

suppression for an extra loop, then we are still between 103 and 106 TeV, so it is not surprising that

this operator would dominate over O68b .

Despite this it is not correct to say that the model we outlined above is actually a model of

O3, because Figure 2.2 contains no f2 and if it were the starting point, it would never have led
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to Figure 2.1. It appears to be a composite model of both of the operators, but unfortunately it is

emerging in such a way that O68b appears largely irrelevant. Given our initial aim of creating an

11D operator model, this model looks like it will not be useful. Any limits on this model will be

dominated by the 7D O3 and so is unlikely to provide insights we can generalise to help rule out

11D models.

To try and understand how this problem emerged, consider the original operator again and

observe that it can be rearranged as:

O68b =
(
LiLjQkdcH lεikεjl

) (
QrdcHr

)
= (O3b)

(
QrdcHr

)
, (2.15)

soO68b containsO3b and this is somehow emerging in the model we created. This type of structure

applies for all operators from 61-75; they are the product of lower dimensional operators with SM

terms. At �rst glance this problem appears unavoidable. If we introduce a new symmetry to forbid

LLQdcH then this term would have to be odd under this symmetry. Then to ensure O68b is even

and thus allowed, QdcH would have to be odd as well and thus forbidden. But a new model will

not be particularly successful if it forbids SM couplings and thus this approach is futile.

Babu and Leung in their paper gave a suggestion as to how to get around such limitations:

non-trivial Lorentz contractions between the terms. This means we must have a diagram where

the vertices cannot contain both Ls, which we already ensure, or Qdc. This last one we had in our
diagram and it may be the source of the problem. So it might seem we can avoid this constraint if

we write down a diagram from O68b without Qd
c at any vertex.

We tried to write down a diagram from O68b without Qd
c at any vertex, however it was found

that this is not possible for any of the six fermion UV completions listed by Volkas and Angel. To

prevent both theQ and dc from being at the same vertex one commonly has to use a Higgs, but then

in diagram A there simply are not enough Higgs, in diagram B the resulting expression is forbidden

by chirality or in diagram C such a diagram would induce a lower dimension one loop model. All

other possibilities fail for various reasons.

Accordingly we conclude that it does not appear possible to write down a consistent model from

O68b that will not be dominated by a lower dimensional operator. This means the operator will not

be useful from our perspective of analysing models purely from 11D operators and so we move on

to a new operator.

2.2 A Model from O31a

The next model we consider is derived fromO31a . Again the choice of this operator was essentially

accidental. Initially we worked with O32a , as it has the highest scale of new physics amongst the

11D operators. Nevertheless this operator contains (Li)c H i, which when expanded couples the

neutrino to the charged component of the Higgs. The closure of the charged Higgs introduces an

additional loop, meaning this operator cannot be completed in just two loops. Accordingly we

chose O31a as it has a similar structure, yet can be closed in two loops. The operator itself has the

form:

O31a = LiLjQid
c
Qku

cHkH lεjl =
[
(Li)cQid

] [
LjH lεjl

] [
QkuH

k
]

(2.16)
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This operator does not have the structure of a lower dimensional operator multiplied with a SM cou-

pling, so we should not run into the exact same problem as we saw for our �rst model. Completing

this using diagram C as in Figure 1.6, we have:

L

Lc

H

H

H

φ2

φ1

φ3

f1R

Q

d

Q u f2L

H

Figure 2.4: A model generated from O31a .

Proceeding as above, this model has the following new particles:

φ1 ∼ (8, 2, 1)
φ2 ∼ (8, 3, 0)

φ3 ∼
(
3, 3,−4/3

)
f1L/R ∼ (8, 4,−1)
f2L/R ∼ (3, 2, 7/3)

(2.17)

where f1L/R carries L = 1, φ3 carries L = 1 and B = −1/3, whilst f2L/R carries B = 1/3.
Otherwise the new particles carry no baryon or lepton numbers. The Lagrangian is written as:

L = LSM + Lnew
kinetic +

2∑
i=1

mFififi

+
[
h1
af1RLaφ2 + h2

bQbf1Rφ3 + g1cdQcddφ1 + h3
ef2LueH + h4

fL
c
ff2Lφ3 + µ12φ1φ2H

+ε1H
(
φ1H

) (
φ1H

)
+ ε112φ1φ1φ2 + ε332φ3φ3φ2 + ε222φ2φ2φ2

+κ1gugf2Lφ1 + κ2hiQhuiφ1 + κ3f1Rf1Lφ2 + κ4f1Lf1Rφ2

+κ5f2Rf2Lφ2 + κ6f2Lf2Rφ2 + κ7fc
2Lf1Lφ3 + κ8fc

2Rf1Rφ3 + h.c.
]

+
3∑

n=1

[
αn

(
φnφn

)2
+ βn

(
φnφn

) (
HH

)
+m2

Si

(
φnφn

)
+

{
γn

(
φnφn

) (
φ1H

)
+ h.c.

}]
+δ12

(
φ1φ1

) (
φ2φ2

)
+ δ13

(
φ1φ1

) (
φ3φ3

)
+ δ23

(
φ2φ2

) (
φ3φ3

)
(2.18)

where a − i denote generations, µ12, m, ε112, ε332 and ε222 carry dimensions of mass, and the

other couplings are dimensionless. Again we assume the new �elds only have one generation and

take both αi and m
2
Si to be positive to prevent the new scalars acquiring a VEV. There are three

terms in the full Lagrangian that break lepton number, all with ∆L = 2, and they are: h4fL
c
ff2Lφ3,

κ7f c
2Lf1Lφ3 and κ8f c

2Rf1Rφ3. Again we should think of this lepton number violation as arising from
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the full Lagrangian, not just these terms. There are no terms that violate baryon number and again

the Lagrangian has no new global symmetries. Finally the model allows four additional two loop

diagrams:

L f1R

Q

u

f2L

Lc

φ3

φ3

φ2

H

H

L f1R

Q

u

f2L

Lc

φ3

φ2

φ1

HH

L f1R

Q

u

f2L

Lc

H

φ3

φ2

φ1

H

L f1R

Q

u

H

φ3

φ2

H

Lc

f2L

f2R

f2L

Figure 2.5: Additional Diagrams.

The above details demonstrate that we have written down a consistent model originating fromO31a

and so we could now calculate the mass associated with this model. Nevertheless it is possible to

see that this model is going to run into problems before we even consider the mass. This is because

the additional diagrams have a different structure to O31a - for example, none contain a d �eld.

They can be thought of as originating from one of:

O4 = LLQucH
O6 = LLQucHHH

(2.19)

At two loops these operators both have a scale of new physics around 107 TeV and so would

dominate over O31a - but perhaps not as strongly as we saw for the O68b model. We are again in a

position where the model cannot really be considered a pure result of O31a and accordingly it will

not be appropriate for our initial aim of examining generic 11D operators.

The failure of this model is not as easy to understand as for the previous case - O31a is not a

product of lower dimensional operators. Nonetheless it appears that the non-trivial SU (2) contrac-
tions that distinguish this operator from its potential substructures like O4, is not always enough to
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prevent these operators arising. For example here whenever we couple H and u to a new fermion,

we will always be liable to introduce the same particles inO31a as might appear inO4 orO6, which

can in turn lead to these operators being induced.

2.3 Conclusions on 11D Operators

In the above two sections we have outlined two consistent and complete models originating from

O68b and O31a . Unfortunately neither one can be thought of as purely an 11D operator model and

so they will not help us in the original aim of analysing the 11D spectrum. Nevertheless they have

revealed some interesting features of the 11D landscape. Product operators (61-75) must use non-

trivial Lorentz contractions or they will be dominated by one of their components parts. As we saw,

however, this will not always be possible - there was no way to avoid this for O68b . Concomitantly

other 11D operators can also inadvertently invoke lower dimension diagrams. This failure is harder

to rationalise, but it appears to be an example of a property that is common in radiative neutrino

mass models. One usually has to choose the new particles carefully so as to not invoke a lower

order model, for example avoid f ∼ (1, 1, 0) or the Type I Seesaw will arise. For the higher

dimensional operators one has to choose particles such that none of the models from the 15 or so

valid lower dimensional operators are invoked and generically this appears challenging. This raises

the interesting possibility that it might simply be impossible to write down a consistent model that

purely originates from an 11D operator, but this must be looked into more carefully.

As a �nal comment on 11D operators, in light of the above results we reconsidered which oper-

ators can be UV completed in two loops. As brie�y noted, the SU (2) structure plays an important

role here - O32a can only be closed in three loops for this reason. The SU (2) contractions do not

appear to have been considered by Volkas and Angel, which would explain the difference between

their list of operators that can be closed in two loops and that of de Gouv�ea and Jenkins. Nonethe-

less after considering their list again, it appears de Gouv�ea and Jenkins have also made a potential

mistake in their analysis of the number of loops required for different operators. It appears they

assumed two loop integrals with an odd numerator exactly vanish, like they would in the one loop

case. This is patently false - see for example appendix B. Two loop integrals have a coupling prop-

agator that is neither even nor odd and this negates such arguments. This assumption was used to

justify why the operators 22, 27, 29b, 33, 39-42, 44-49 and 51 - except for 44c, 47f and 47h - can

only be closed in three loops. Treating the integrals correctly would suggest these operators can be

closed in two loops, which would increase the scale of new physics by 16π2 - roughly two orders

of magnitude. The argument cannot be applied to reduce 44c, 47f and 47h to two loop closures due

to the common structure LiLjεij = Lc i
Ljεij = νce − ecν. This structure means we cannot im-

mediately obtain two external neutrinos as a mass diagram requires. We can �x this by converting

e to ν through a charged Higgs coupling, but closing off this Higgs requires another loop. These

operators should be able to be closed in three loops, however, rather than the four de Gouv�ea and

Jenkins suggest. Drawing on this conclusion we now have a new list of operators that require more

than two loops in their UV completion: 15-20, 24, 28, 30a, 32, 34-38, 43, 44c, 47f, 47h, 50, 52-60,

63a, 64b, 65, 68a, 69b, 70, 73a, 74b and 75.
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3 Constraints on Six Fermion Models

In the process of coming up with the two models outlined in the previous section, it was discovered

that not all of the UV completions listed by Volkas and Angel are actually possible. Instead there

are a number of constraints on what models are possible for different operators. The constraints

were uncovered in a somewhat piecemeal fashion and they have been listed in a similar manner

below. The only ordering principle is that these all apply to six fermion models and are either

restrictions to avoid induced one loop models or alternatively restrictions on chirality.

3.1 Induced One Loop Models

If a two loop model allows neutrino mass to be generated at one loop level, then this single loop

diagram will almost certainly dominate. Furthermore as the two loop diagram will usually act as

a correction to the one loop diagram, its contribution will be divergent. For these reasons such

models must be avoided. Several situations where this problem can arise are outlined below.

3.1.1 Restriction on Scalar Completion

For certain choices of the fermions at the top of the scalar UV completion, X and Y in Figure 3.1,

the model will unavoidably lead to a one loop diagram of the form seen on the right of that �gure.

Lc L

XSMYSM

φ1 φ2

φ3

Lc L

XSMYSM

φ1 φ2

H

H

Figure 3.1: Original scalar completion (left) and potential one loop diagram (right).

The issue arises if X and Y are SM �elds such that Y XH or Y XH is invariant. In this case it is

a simple check to see that φ3 will be such that there must also be an invariant coupling of the form

φ1φ2H or φ1φ2H . These two couplings will mean there is also an allowed diagram where φ3 is

removed and replaced by two Higgs �elds.

This issue can be most easily avoided by choosing X and Y so they do not couple to a Higgs.

But if they do the one loop can only be avoided in the following way. IfX and Y carry colour, then

we can choose φ3 to transform under the adjoint representation of SU (3). In addition if we place

a Higgs �eld on φ3, then this will mean that there is no invariant coupling between φ1, φ2 and H .

This Higgs insertion is clearly only possible for 11D operators and further will not hold if X and

Y are colourless (e.g. L and e). This is because there will then be a coupling of the form φ3HH ,

which gives a VEV to φ3 and will similarly break the diagram down to one loop.
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3.1.2 First Restriction on Completion via Diagram A, B and C

Consider the one loop diagrams in Figure 3.2, which can arise as subdiagrams in the fermion

completions seen in diagram A, B and C. Despite what the diagram suggests, the solid lines need

not be fermions. It turns out the argument below holds regardless of whether any of the lines are

fermions or scalars, it has simply be drawn this way to give a concrete example.

X

Z

Y

fnew

φnew

H

X

Y

X

fnew

φnew

Figure 3.2: Problematic subdiagrams.

The issue is that these structures can give rise to an invariant coupling of the form ZfnewH (sim-

ilarly for H) for the diagram on the left and Y fnew for the one on the right. By considering the

most general quantum numbers for the particles that allow the couplings as seen in the diagram,

one can see that these lower order couplings can be avoided in two possible ways. In the case of

the left hand diagram we can place a Higgs on the φnew line and then the lower order coupling

will not be allowed (ZfnewHH is not renormalizable). The other possibility is to choose the non-

trivial SU (2) quantum number for fnew. To understand this, one can show that in the case of the

left diagram, fnew ∼ SU (2)X ⊗ SU (2)Y ⊗ SU (2)Z , but if X and Y couple to the Higgs, then

SU (2)X ⊗ SU (2)Y ∼ 2 or 4. If we choose the 4 then fnew ∼ 4 ⊗ SU (2)Z and ZfnewH will not

be invariant, forbidding the lower order coupling. An example of this second option is the diagram

in Figure 2.2 from the O68b model. Here Z is d and we avoid the restriction because the SU (2)
number of f1R is 4⊗ 1 = 4.

For the second diagram a similar argument reveals only the second option will avoid the prob-

lem. Naively one might think two Higgs could be placed on φnew line, but if this is done it will not

be possible to satisfy the chirality constraints on diagram A, B and C set out in the section below.

3.1.3 Second Restriction on Completion via Diagram A, B and C

The second possible issue that can arise for diagrams A, B and C is if the new fermion in these

structures is such to allow a Majorana mass term ff c, and it is coupled to an L or Lc and a new

scalar φ. In this case we can show there will be a further three couplings: Lf cφ, fLcφ and φφHH .

These are suf�cient to induce the one loop diagram in Figure 3.3, which originates from O1.
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H

H

φφ

L Lcf c f

Figure 3.3: Induced one loop graph.

If a Higgs �eld is inserted to ensure the fermion is no longer connected to an L, then the one loop
graph can be avoided. Similarly this one loop graph causes no problems in the case of diagram D1

or D2.

3.2 General Chirality Constraints

All the constraints in this section follow from the observation that PRPL = PLPR = 0. This

puts a restriction on what fermions we can have meeting at a given vertex: for example eRuR =
ePLPRu = 0 is forbidden, whilst eRQL is allowed. Combining this observation with the fact that all

Majorana neutrino mass diagrams must have the left handed L and right handed Lc externally pro-

vides a surprisingly strong restriction on what UV completions are allowed for certain six fermion

operators.

A general observation that will be made use of below is that all six fermion operators that can

be closed in two loops come in two classes. Class A operators have their external fermions closed

off through a coupling with the Higgs; for example O12 = LLQuQu, where we close off the loops
using QuH couplings. Class B operators are closed off by just coupling a fermion �eld to its

conjugate; for example O51 = LLuuuuHH , where we close off the loops using uu. The key point
is that there are no operators where one pair of fermions is closed off as in class A and the other

like in class B - both pairs are always closed off in the same way.

Below we will consider in turn each of the possible UV completions for six fermion operators,

seen in Figure 1.4 and 1.6 - there is no need to consider the structure in Figure 1.5 separately as

it is clear it is only allowed when there are two Higgs �elds and they are used as in the diagram.

But before doing so here are the two main conclusions that can be drawn from this analysis: 1.

9D six fermion operators can only be opened up using the scalar UV completion or a fermion

completion where the new fermion can obtain a Majorana mass; and 2. Models can have up to

three new fermions. Given the restriction on induced one loop models, the caveat listed on the �rst
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conclusion can only apply to diagram D1 and D2. For an example of such a model see Volkas and

Angel. As this can only occur for diagram D and the requirement that the new fermion can obtain

a Majorana mass is quite strong, it is likely there are only a few models of this form. The second

conclusion suggests chirality allows models with a large number of new fermions. As neutrino

mass models traditionally do not have many associated new fermions, it would be interesting to see

if a consistent model of this type can in fact be realised.

• Scalar UV: For either class A or B operators, looking at Figure 1.4 the diagram will not be

forbidden by chirality if no Higgs are placed on the fermion line. This implies this structure

can be supported by either 9D or 11D six fermion operators. In the 11D case it will also be

possible to put two Higgs on the fermion line, but it will not be possible to just put one.

• Diagram A: In this case, the fermion line at the bottom creates a problem. This will only be

non-vanishing if there is an extra chirality �ip. This can either be brought about by inserting

a Higgs somewhere on the line or alternatively making the new fermion a Majorana particle

and using its mass term to induce a chirality �ip. The latter option will induce a one loop

diagram as seen above, so is not a valid option. The closed fermion loop at the top of the

structure will be valid for either class A or B. Adding in a single extra Higgs that is available

for 11D models will lead to forbidden vertices. Thus this completion is only allowed for 11D

operators and always leads to three new scalars and two new fermions.

• Diagram B: For this diagram, working around the fermion line it can be seen that the chirality

will not match up at either end unless a single Higgs is inserted somewhere for both class A

and B operators. As above giving the new fermion a Majorana mass would lead to a one

loop diagram, so we are restricted to 11D operators. Nevertheless in the 11D case, if there

is a Majorana fermion the two Higgs can be placed on the fermion line to give a model with

three new fermions. In the absence of a Majorana fermion, inserting two Higgs would again

destroy the balance, so the second Higgs must be placed on a scalar and the model will have

three new scalars and two new fermions.

• Diagram C: The analysis for this diagram is identical to that of diagram B.

• Diagram D1: In the case of class A operators the fermion line at the top of the diagram will

be allowed by chirality, but the loop at the bottom will be forbidden. This problem can be

avoided either by a Higgs insertion or alternatively using a Majorana mass term for the new

fermion. This option can work for 9D or 11D operators. For class B operators the upper line

will be forbidden, whilst the lower loop is allowed. This time the problem can only be �xed

by a Higgs insertion at the top and so is only available to 11D operators.

• Diagram D2: In the case of class A or B operators the fermion line is invalid without an

extra chirality �ip. As mentioned this time it is possible either with a Higgs insertion or a

Majorana mass for the new fermion, so is available to either 9D or 11D operators. Again

with a Majorana fermion the 11D operators can give rise to models with three new fermions.
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4 Testing the Zee-Babu Model at the LHC

As mentioned in section 1, the direct search for new particles from neutrino mass models at the

LHC can provide important constraints on models and operators more generally. Indeed this class

of constraints has not yet been explored and so the Melbourne group is seeking to play a pioneering

role here. In this section we will use 7 TeV ATLAS data to perform a direct search for one of the

particles from the ZBM. By setting strong limits on the particle mass, we seek to demonstrate the

proof of concept that LHC data will play an important role in the general operator analysis. To

begin with we provide a brief overview of the detector itself.

4.1 Overview of the ATLAS detector

Figure 4.1: The ATLAS detector [32].

Figure 4.1 contains a graphical representation of the ATLAS detector with the key components

labelled. The detector is made up of an inner tracking system, hadronic and electromagnetic

calorimeters, and �nally a muon spectrometer on the outside. The inner system surrounds the

beam pipe at the interaction point and is made up of a set of mostly silicon detectors contained

within a 2 T magnetic �eld. This system is used to track the path of particles just after the proton

proton interaction; the magnetic �eld causes the trajectories of charged particles to curve, allowing

their charge and transverse momentum to be calculated. The calorimeters are used to destructively

measure the energy of the particles that pass through them. Finally the muon chambers are used to

measure the path of the muons, which generally are not stopped in the inner parts of the detector.

Variables within ATLAS are de�ned with respect to a set of modi�ed cylindrical coordinates

where the z axis is taken along the beam pipe. Using these we can de�ne the basic variables

used throughout this section: pT and ET are the momentum and energy perpendicular to the beam

pipe, and η = − log tan (θ/2), where θ is the polar angle measured from the positive z axis. It is
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important to realise that while naively one would suspect pT and ET are trivially related through

relativistic kinematics, they need to be considered separately as they are measured in different

ways. As alluded to above pT is calculated from the curvature of the particle's track, whereas ET

is determined using the energy deposited in the calorimeter.

The work done by the author in contribution to the results of this section mainly related to

Monte Carlo (MC). MC provides a computer simulation of what a theory should look like in the

detector - it bridges the gap between a Lagrangian and a muon energy distributions in the ATLAS

detector. Testing a model at the LHC essentially boils down to comparing the MC of a given model

to the data and so ensuring the MC behaves as we would expect it to appear in the detector is an

essential step in any analysis. This process is referred to as validation of the MC.

There are a number of steps involved in the production of MC for a new physics model. Firstly

the Lagrangian must be written into a Mathematica package called FeynRules, which calculates

the Feynman rules associated with the model. The Feynman rules are then fed into MadGraph,

which calculates the matrix elements that can be used to evaluate cross sections or decay widths.

The program is then run through Pythia as this adds a more realistic treatment of several physical

processes including weak boson decays or initial and �nal state radiation. Finally the corrected

matrix elements are run through a model of the ATLAS detector to predict what the theory would

look like in data.

4.2 Determining how to Test the Zee-Babu Model

4.2.1 Overview of the Zee-Babu Model

The ZBM is the archetypal two-loop radiative neutrino mass model. As explained in section 1 it

can be derived from O9 and thus �ts into the effective operator analysis. Furthermore we showed

the neutrino mass diagram it generates in Figure 1.7. As can be seen there, the model introduces

two new charged scalars that transform as h+ ∼ (1, 1, 2) and k++ ∼ (1, 1, 4), which we will refer
to as the k particle. This diagram induces the following Lagrangian [29, 33]:

L ⊃ (Dµh)
† (Dµh) + (Dµk)

† (Dµk) +
[
fabLc

aLbh+ gcdeccedk − µh̄h̄k + h.c.
]

−m′2
h |h|2 −m′2

k |k|2 − λh |h|4 − λk |k|4 − λhk |h|2HH − λkH |k|2 H̄H, (4.1)

where µ, m′
h and m

′
k have dimension of mass, but other couplings are dimensionless. The masses

of the new particles are combined from the mass term in the scalar potential, as well as the Higgs

coupling terms, i.e. m2
i = m′2

i + λiHv
2. This Lagrangian requires h and k to carry two units of

lepton number each. With this choice the µ term violates lepton number by two units, and ensures

Figure 1.7 is a Majorana mass diagram.

A complete review of constraints on this model, including the prospects of direct detection at

the LHC, is presented in [29]. For example, [34] has shown that the bound of BR (µ→ eγ) ≤ 1.2

× 10-11 translates into a constraint on the h mass ofmh ≥ 160 GeV. This branching ratio has since

been improved by MEG [35] and so this limit could almost certainly be improved.

In this work we have focussed on setting limits on the k particle due to its clean detection

signature. As explained in [29], if at �rst order we neglect the µh̄h̄k coupling, then we would
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expect pair production via pp → kk̄ as in Figure 4.2. As the k particle carries two units of lepton

number, it will then decay into two same sign leptons denoted `±`′±. Thus its detection signature

is same sign dilepton pairs, which can be considered clean for the following two reasons. Firstly

there is limited SM background to our signal. There are no doubly charged particles in the SM and

accordingly pair production of leptons occurs in opposite sign pairs, for example Z → e+e−, rather
than same sign pairs. Despite this there is a �nite background from events where the charge of the

lepton is misidenti�ed, a jet is mistakenly reconstructed as a lepton, or from multilepton SM events

such as ZZ → `+`−`′+`′−. Secondly most of the backgrounds are leptonic, which occur several

orders of magnitude less often than QCD processes at a proton proton machine like the LHC. While

this means the signal is also not produced as often, the key quantity in any analysis is the signal to

noise ratio and this substantially bene�ts from the background reduction.

q

q̄

γ∗, Z∗

k−−

k++

Figure 4.2: Pair Production of the k particle.

In line with the process outlined earlier we produced MC for both pp → kk → ````, which was

used, but also pp → hh → `ν`ν, which was not. In order to validate our locally produced signal

MC, we plotted distributions of many different variables for a large number of masses for the k
particle. Any time a feature was seen in a distribution was not as expected, we would make sure we

could trace its origin until it was either �xed or understood.

4.2.2 Fitting into an Existing Analysis

Although rare in the SM, same sign dileptons are predicted in a variegated collection of new physics

models, including the left-right symmetric model, Higgs triplet model [36], little Higgs model [37],

fourth-family quarks [38], supersymmetry [39] and universal extra dimensions [40]. These models

are searched for in the same sign dilepton analysis, which aims to place limits on the anomalous (i.e.

non-SM) production of same sign lepton pairs in a model independent way, and then subsequently

perform a dedicated search for the left and right handed doubly charged Higgs (DCH) that appear

in the left-right symmetric model.

This presented an opportunity for testing the ZBM as the k particle transforms exactly like the

left handed DCH (denoted HL), except that HL is not a singlet under SU (2). Nevertheless as the
search simply looked for same sign leptons - it did not, for example, consider the possibility that

either one might have come from a W - it seemed possible the limits on HL might be directly

transferable to the k particle.
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In order to test this hypothesis we needed to compare the predictions of both models for key vari-

ables used in the same sign dilepton analysis. To do this we produced 10,000 MC signal events of

pp→ HLHL/kk, which then decay into all possible combinations of electrons and muons. We did

not consider topologies with taus as they have a large QCD background. For this reason we use the

terminology common in experimental particle physics that a `lepton' refers only to electrons and

muons. In order to facilitate a concrete comparison, we set the mass of both particles to 200 GeV

and their decay widths to 1 GeV. Note that whilst the two models would not predict these particles

to have the same width, this is a parameter that can be scaled within the model - we can set limits

for different widths - and so it is not unreasonable to match the two particles in this way.

The key variables chosen for the comparison were the pT , η and the invariant mass of the two

leptons, denoted m (``). These variables play a critical role in the same sign dilepton analysis

and if the two models look the same in these variables then there would be no reason to suspect

they should behave at all differently as far as the analysis was concerned. Before presenting the

�gures, it is important to note we do not simply plot the pT of all leptons in the event. Rather

as we are interested in same sign lepton pairs, we break the event into a set of all positively and

negatively charged leptons. Within the smaller set of same sign leptons, we choose the lepton with

the highest pT and call it the leading lepton and that with the second highest the subleading lepton.

The rationale for this is that these leptons are most likely to be the ones coming from the decaying

k or HL. Clearly this will not always be true, but to a good approximation it is as our MC contains

mainly signal. The only backgrounds included in the sample are those simulated from initial and

�nal state radiation as well as detector effects. Then we plot the pT and η distributions for the

leading and subleading leptons (combining the results from both charges). Finally the invariant

mass distribution is the invariant mass of the leading and subleading lepton. These results are

presented in Figure 4.3. Note in the invariant mass distribution we see a Breit-Wigner centred

at the particle mass 200 GeV, which is exactly what we would expect for a reconstructed mass

distribution of a particle with �nite decay width and thus lifetime.

Figure 4.3 shows that as far as the key variables in this analysis are concerned, there is no

difference between HL and the k. This demonstrates that any limits set on the HL could trivially

be translated to the k. As our original aim was to set limits on the k, it was clear the best way to go
about this was to join the same sign dilepton group and assist them in their analysis.

4.3 Overview of the Same Sign Dilepton Analysis

The aim of the same sign dilepton analysis was to update the 2010 1.6 fb-1 dimuon analysis [43]

to include the full 2011 4.7 fb-1 dataset as well as all channels (ee, eµ and µµ), and then to use

this to set limits on the DCH. Both objectives were met and the results are published in [41, 42].

Note that although the author ultimately contributed to both papers, he is only listed as an author in

the �rst due to the ATLAS rule forbidding anyone to be an author on more than one paper before

completing their service work.

We have already noted that this search channel is well motivated by a number of new physics

models including the ZBM. Also we pointed out that same sign dilepton events are rare in the

SM and this means one can perform a low background search and constrain such models even if
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Figure 4.3: Comparison of the k and HL in key variables.

they only predict a marginal enhancement over background. Nevertheless as there are many new

models that could explain any excess, the analysis is careful to be as inclusive as possible. This

means the analysis tries to use the minimal number of selection criteria, as particular cuts can be

biased against particular models.

Below we provide a prospectus of the analysis as a whole. In all but the �nal subsection we

will be explaining the work of the general search for anomalous production of same sign dilepton

pairs, the details of which are contained in [41]. The �nal subsection outlines how the search was

optimised for the doubly charged Higgs as in [42]. Throughout we place particular emphasis on

work done by the author, which mainly related to the de�nition of the �ducial region and calculation

of εfid explained in the limit setting subsection. Note the author was also involved in a number of

smaller tasks including the request and validation of updated DCH MC, comparing the impact on

MC of using different simulations of the ATLAS detector or parton distribution functions (PDFs),

and calculating selection ef�ciencies for the DCH passing our selection criteria necessary for [42].

Nonetheless there is not room here to go into these smaller tasks.
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4.3.1 Backgrounds

Although same sign lepton pairs occur rarely in the SM and we will set up our event selection to

minimise contamination from potential backgrounds, there are no zero background searches and

even if they are small, the backgrounds here must be carefully considered if we are to distinguish

them from a signal. There are three dominant sources of background in this analysis: prompt,

charge-�ip and non-prompt or `fakes'. We discuss each in turn below.

The prompt background arises from the SM directly creating our signal - two same sign leptons.

Prompt refers to the fact these leptons originate from the decay of relatively short lived particles;

non-prompt leptons come from more complicated and thereby longer decay chain (for example a

lepton emerging from a jet). In the standard model these can arise from the production ofWZ, ZZ
and to a lesser extentW±W±, tt̄W and tt̄Z. For example we could have pp→ ZZ → e+e−µ+µ−

and this would be a clear background to our signal. The size of this background is determined from

MC samples.

The charge-�ip background occurs when there is a misidenti�cation of a charge of one of the

leptons. This can occur for a high momentum particle as the detector is unable to resolve the

curvature of the track. Studies on Z → µµ determined the effect is completely negligible for

muons and thus this is only a background for electron �nal states. For the electrons the background

is estimated from MC, but this process does not get the size exactly correct. The size is corrected

by scaling MC to agree with data using Z → ee in the Z mass window.

Finally the non-prompt or fake background arises where a lepton emerges from a hadronic decay

or misidenti�cation. A number of processes can contribute to this such as W+ jet, Z+jet, multi-

jet, and tt̄ production. For example in Z+jet, the Z could decay to `+`− and if the jet then fakes a

lepton, we have a background that might pass our selection criteria. The underlying processes for

these backgrounds are related to QCD, and because hadron machines like the LHC produce QCD

events so regularly, even if a jet faking a lepton is rare this can be a considerable background. It also

makes approximating this background via MC unrealistic because of how much would be required.

Accordingly we use procedures known as `data driven' techniques to estimate this background. In

essence the size of the background is estimated in a region that is orthogonal to the region de�ned

by our event selection, outlined below, so that we can be con�dent it will not be contaminated by

our signal. The orthogonal region is determined by simply inverting one of the event selection cuts.

Once the background is estimated in this region it is then scaled back to our event region to get an

approximate size of the background. The actual details, however, are quite technical and interested

readers are referred to the paper for further information.

4.3.2 Event Selection

The aim of event selection is to de�ne a selection criteria in a way that maximises our signal to noise

ratio. To begin with we have to decide how to choose our electrons, muons and jets. This is because

the detector does not `see' particles, rather it measures quantities like hits in its tracking system or

energy depositions in the calorimeters. We then need to impose algorithms that convert from this

raw information to physical objects like an electron. There are a number of standard algorithms

used for these throughout ATLAS. For the leptons we selected only the cleanest particles. This
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means we potentially throw away a number of candidate events, but it reduces the possibility of

contamination by misidenti�ed particles - one of our key backgrounds. As seen, jets can form

background to our signal in two ways: a jet fakes a lepton or alternatively a lepton forms part of

a jet. In order to catch this as often as possible, we choose the algorithm that catches the most

number of jets, even though it is not the cleanest.

Next we need to ensure we are not selecting leptons that have come from background noise,

which occurs because colliding bunches of protons creates a busy environment in the detector. This

is done by requiring leptons to have high pT and a central η, which suggests they came from a hard

scattering event. Speci�cally we require at least two electrons or muons with the same charge that

have pT > 20 GeV. If the leading lepton is an electron, we also require it had pT > 25 GeV. Muons

must have |η| < 2.5, whereas electrons must have both |η| < 2.47 but not 1.37 < |η| < 1.52. This
excluded region is referred to as the crack and is removed as the electronics in this section have

poor electron reconstruction. In addition we require that the candidate leptons both originate from

near the same vertex. This is done as again it biases against leptons that were not created from the

same particle.

A further criteria that biases against background is to require the particles to be isolated from

other activity, as this prevents picking up leptons that might have originated from a jet, for example.

Although the probability for this occurring might be quite small, as QCD processes occur with

enormous regularity in the LHC, this cut is one of the most important in maximising signal to

background in our analysis. Furthermore this criteria was quite important in the work of the author

on limit setting and so we will explain it in a bit of detail. To begin with the standard way of

determining if two objects are near each other in the detector is to measure the difference in the

angular position between their tracks - ∆η and ∆φ - and form the following cone size variable:

∆R =

√
(∆η)2 + (∆φ)2 (4.2)

The larger we require the ∆R separation to be between the particles, the more isolated they must

be. Then to avoid the known issue of counting jets as an electron, we veto any electron within

∆R = 0.2 of a jet with pT > 25 GeV and |η| < 2.8. Furthermore all lepton candidates must be

separated by at least ∆R > 0.4 from any jet with pT > 25 GeV +0.05× pT (`) and |η| < 2.8.
A further isolation type criteria that is used to remove leptons that are more likely to be due

to background requires the introduction of two new variables: Econe∆Riso
T and pcone∆Riso

T . These

variables are de�ned for a given particle as the sum of the ET or pT of all objects in a cone of

size ∆Riso around the particle, without including the original particle itself. As pT is measured

from the bend in the particle track, it turns out only charged particles with pT > 1 GeV contribute

to pcone∆Riso
T . If either variable is too large, it would suggest there is a lot of activity around the

lepton and thus it is more likely to have come from some complicated background event rather

than a simple new physics process. Cuts on these variables have been optimised for signal over

background and for this analysis we require for electrons:

• Econe0.2
T < (3 + (pT (e)− 20)× 0.037) GeV; and

• pcone0.3T /pT (e) < 0.1.
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TheEcone
T variable is particularly susceptible to the amount of background noise in the detector, as it

adds in everything within the cone. This noise is referred to as pileup and we have to correct Econe
T

for the amount of pileup in the detector and this becomes more dif�cult as the rate of collisions

increases. For muons we instead require:

• pcone0.4T /pT (µ) < 0.06, if pT (µ) < 100 GeV; or

• pcone0.4T < (4 + pT (µ)× 0.02) GeV, if pT (µ) > 100 GeV.

Finally we place two requirements on the invariant mass of the candidate same sign dilepton pair.

Firstly we require the invariant mass to be greater than 15 GeV. This is because none of the new

particles are expected to be this light, but some of the backgrounds are. Secondly if both leptons

are electrons we veto those with an invariant mass in the range 70-110 GeV. This is done as this

window was used to calibrate the charge �ip background, but also as it is roughly the Z boson

mass and it reduces the background from Z → e+e− where one of the charges of the electrons is

misidenti�ed.

There are also several technical requirements such as trigger matching of the leptons. We have

not outlined these as it is not as transparent why they are necessary and also they do not have a

substantial impact on the selection. Nevertheless note that we have not set, for example, any cuts on

the number of jets in the event. This is because, unlike the ZBM, some new physics models predict

jets in addition to like sign dileptons and such cuts would be against the spirit of inclusiveness.

4.3.3 Systematics

Although it has not been mentioned so far, of course all experimental values will be accompanied by

a statistical and systematic error. Calculating the systematic uncertainties is a challenging process

and often one of the most carefully considered aspects of an analysis.

Uncertainties can enter into the values in a number of different ways. For example the error

in the luminosity of ±3.9% translates into an error on the number of events we have for values

approximated from MC. The MC for SM backgrounds also acquires an uncertainty from two more

sources: 1. An error in the cross section due to higher-order corrections, which is, for example,

estimated at ±10% for WZ and ZZ; and 2. An error in the PDFs of ±7%. Note PDFs are

crucial in determining the outcome of a proton proton collision. There are also errors associated

with fundamental objects like our lepton identi�cation. Such errors can be approximated from well

understood processes like Z decays and results in an uncertainty on the number of like-sign pairs of

±(3-4)%. Several other important sources of error include the uncertainty in the electron energy of

±1% and in how often charge misidenti�cation occurs for electrons, which varies between ±15%

and±23% for different invariant mass ranges. The analysis treats all of these uncertainties carefully

and they are translated into errors on �nal results.
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4.3.4 Results

Next we look at the actual data to count the number of events that pass our event selection and

compare this to our background estimates with error. This is done for each �nal state separately.

The values in Table 1 are given for different regions of invariant mass of the lepton pairs, as higher

mass new particles would be easier to observe in the higher mass windows. Also in Figure 4.4 we

present the invariant mass distribution for the different �nal states. Both of these are taken directly

from [41]. None of these results suggest any substantial deviation from the expected background.

Note that we also looked at positive and negative pairs separately and again observed no signi�cant

deviation.
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Figure 4.4: Invariant mass distributions for (a) ee, (b) µµ, and (c) eµ pairs passing the full event

selection. The data is represented by the closed circles, whereas the background is represented by

the stacked histograms.
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Table 1: Comparison of data to background expectation for same sign lepton pairs in the region

de�ned by our event selection.

Sample Number of electron pairs withm(e±e±)
> 15 GeV > 100 GeV > 200 GeV > 300 GeV > 400 GeV

Prompt 101± 13 56.3± 7.2 14.8± 2.0 4.3± 0.7 1.4± 0.3

Non-prompt 75± 21 28.8± 8.6 5.8± 2.5 0.5+0.8
−0.5 0.0+0.2

−0.0

Charge �ips and
170± 33 91± 16 22.1± 4.4 8.0± 1.7 3.4± 0.8

conversions

Sum of backgrounds 346± 44 176± 21 42.8± 5.7 12.8± 2.1 4.8± 0.9

Data 329 171 38 10 3

Number of muon pairs withm(µ±µ±)
> 15 GeV > 100 GeV > 200 GeV > 300 GeV > 400 GeV

Prompt 205± 26 90± 11 21.8± 2.8 5.8± 0.9 2.2± 0.4

Non-prompt 42± 14 12.1± 4.6 1.0± 0.6 0.0+0.3
−0.0 0.0+0.3

−0.0

Charge �ips 0.0+4.9
−0.0 0.0+2.5

−0.0 0.0+1.8
−0.0 0.0+1.7

−0.0 0.0+1.7
−0.0

Sum of backgrounds 247+30
−29 102± 12 22.8+3.4

−2.9 5.8+1.9
−0.9 2.2+1.7

−0.4

Data 264 110 29 6 2

Number of lepton pairs withm(e±µ±)
> 15 GeV > 100 GeV > 200 GeV > 300 GeV > 400 GeV

Prompt 346 ± 43 157 ± 20 36.6 ± 4.7 10.8 ± 1.5 3.9 ± 0.6

Non-prompt 151 ± 47 45 ± 13 9.2 ± 4.1 2.6 ± 1.1 1.0 ± 0.6

Charge �ips and
142 ± 28 33 ± 7 10.5 ± 2.8 2.9 ± 1.2 2.2 ± 1.1

conversions

Sum of backgrounds 639 ± 71 235 ± 25 56.4 ± 7.0 16.3 ± 2.3 7.0 ± 1.4

Data 658 259 61 17 7
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4.3.5 Limit Setting

As the data is entirely consistent with the expected background, we use the results to set a limit

on the production of new physics. The �rst step is to determine a 95% con�dence level (CL) for

the upper limit on the number of events in the different invariant mass windows, denoted N95. The

standard practice in ATLAS is to use the CLs method [44].

Now naively one might think we could translate this directly to a limit on the cross section

using σ95 = N95/ (A× ε× L ), where A × ε is the acceptance times ef�ciency and L =
∫
Ldt

is the integrated luminosity (speci�cally 4.7 fb-1 here). A× ε is required as σ95 is the cross section
for production anywhere in the detector, but N95 is a result of the number of events counted in the

event region. The event region does not cover the entire detector, for example there are cuts on η,
and the fraction of the detector covered by the analysis is the acceptance A. Furthermore not all

same sign dilepton pairs in this region are detected because of the selection criteria; the ef�ciency

for detecting such pairs is re�ected in ε and is a function of our selection criteria. Nevertheless as

should be clear the limit here is critically dependent on the event selection cuts. This region has

been de�ned using variables that theorists external to ATLAS do not have access to, for example

the pileup corrected Econe
T . For this reason a theorist would not be able to calculate what ε should

be for their model and thus such a naive cross section limit would be useless.

The way around this is to de�ne a new region of phase space, called the �ducial region, solely

in terms of criteria theorists can apply themselves. By setting a limit in a region where the theorists

can calculate what the cross section of their model is, the limit becomes usable. Like the event

selection region, the �ducial region is de�ned by a series of cuts. In order to determine what the

criteria should be it is useful to introduce the model dependent parameter εfid, called the �ducial

ef�ciency, which quanti�es how similar the �ducial and selection regions are. To evaluate this

quantity we take signal MC from a speci�c model and calculate the following ratio:

εfid ≡
Number of pairs that pass both the �ducial region and event selection criteria

Number of pairs that pass the event selection criteria
× 100 (4.3)

Once this is evaluated, we can de�ne a more meaningful limit:

σfid
95 =

N95

εfid ×
∫
Ldt

(4.4)

where σfid
95 is the 95% CL upper limit on the cross section in the �ducial region, not the entire

detector so there is no acceptance factor. Nonetheless the limit obtained is critically dependent on

εfid and thus the de�nition of the �ducial region. The idea is to optimise the �ducial region criteria

according to the following principles:

• Maximise the �ducial ef�ciency in order to set the strongest limit via (4.4);

• Minimise the leakage, which is de�ned as the number of events that pass the selection criteria,

but not the �ducial criteria, divided by the number that passed selection times 100. In this

sense it is orthogonal to the �ducial ef�ciency and if it is large this would suggest strong

disagreement between the selection and �ducial regions;
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• Ensure the �ducial ef�ciency is relatively �at across different models and masses within

models. As we consider models with a number of different �nal state topologies, this ensures

that our conservative limit should be applicable even to models not considered; and

• The cuts themselves should not be overly complicated as this introduces the possibility that

theorists trying to set limits on their models could misuse them.

The third point listed was the primary focus of the analysis as it gives con�dence the limit is

transferable to models not considered, but each played a part in guiding the process. Naively it

would seem the best way to maximise εfid would be to make the selection and �ducial region as

similar as possible. Yet as theorists only have access to the 4-vectors of the different particles, this

is all we can use to de�ne criteria similar to the those in event selection. Note as mentioned εfid was
calculated for a number of different models. We used theories with various topologies, speci�cally

with a wide range of jet multiplicities and lepton momenta. The models considered were a DCH

for masses between 50 and 1000 GeV, fourth generation quarks decaying toWt with masses from

300 to 500 GeV, like-sign top-quark production via a contact interaction, and a right handedW of

mass 800 to 2500 GeV, which then decays to same sign leptons and a right handed neutrino.

As a starting point in the de�nition of the �ducial region, the selection cuts on the simplest

variables - pT , η and m (``) - were exactly mimicked from the event region cuts. There was no

reason to suspect modifying such simple cuts would help with any of our aims. Now the previous

µµ analysis had augmented these simple cuts with a jet isolation requirement; it did not include any

of the pconeT or Econe
T criteria involved in event selection. Nevertheless as mentioned under event

selection, these cuts play a key role in suppressing QCD backgrounds. It was thought that �nding

a way to include these variables into the �ducial region would substantially improve performance,

given their importance in the selection region. We'll discuss each of these below.

To de�ne pcone∆Riso
T for a given lepton using 4-vectors only, we calculated the ∆R between all

charged particles and the lepton using (4.2), and then added up the pT for those with ∆R ≤ ∆Riso

and pT > 1GeV. Note that one must be careful to ensure the pT of the original lepton is not included

and also that the same particle is not added several times. This second point is more subtle than

it may appear. If, for example, a particle undergoes Bremsstrahlung in the detector (e.g. e → eγ)
then as the program treats the particle before and after this event separately, one can end up adding

it twice. To remove this possibility we only added in stable particles and disregarded particles that

emerged from detector interactions.

With the above de�nition settled we implemented the pcone∆Riso
T cuts exactly as in the selection

criteria. It turned out these had a substantial impact: they led to a higher εfid, reduced leakage and
increased uniformity across models and masses. The de�nition was perhaps a bit complicated, but

given the bene�t to other considerations it was decided it was worthwhile to include. Furthermore

it was realised that now the jet isolation cut was redundant - the pcone∆Riso
T cut caught almost all

non-isolated leptons.

Econe
T did not share the same elegant properties. It was de�ned similarly to pconeT , but we added

in all particles rather than just charged ones. This time we needed to be careful to remove neutri-

nos, as these would not be detected anywhere in the ATLAS detector, let alone the calorimeters,

and so would not contribute to the selection values. Unfortunately when this variable was added
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the leakage values increased substantially, some models produced values greater than 30%. For

comparison the leakage would ideally only be several percent.

In order to determine what was going on, we sought to compare our �ducial de�nition of Econe
T

to the selection version, created by the ATLAS analysis code. In order to do this we calculated the

Econe
T in the two different ways for the most energetic lepton in each event from the 50 GeV DCH

MC sample. We then plotted them against each other in a 2D scatter plot. If our �ducial de�nition

was working accurately, there should be a strong correlation between the two values. As can be

seen in Figure 4.5, this is not the case. We have only shown the values here over a small energy

range, but the result is typical of what was seen: there was no correlation between the variables.
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Figure 4.5: Correlation between Selection and Fiducial Econe
T .

As noted earlier, Econe
T is particularly sensitive to pileup. As our �ducial de�nition makes no

attempt to account for this, it was suspected that this was causing the difference between our �ducial

and selection region and thus a large leakage. We investigated the possibility of modelling pileup

in the �ducial criteria, but ultimately it was concluded any available option would be much too

complicated to pass our simplicity requirement. For these reasons it was decided we would leave

out Econe
T from the �ducial region. As an aside this highlights that one must be careful when trying

to recreate complicated ATLAS cuts just from 4-vectors.

Accordingly we de�ne our �ducial region using cuts on same sign pairs to include an invariant

mass cut of m (``) > 15 GeV, a veto on 70 GeV < m (ee) < 110 GeV and the cuts on individual

leptons listed in Table 2. Using these cuts it was simply a matter of calculating εfid and the leakage
for all the different models and masses. This was done and from these values we conservatively

selected the lowest �ducial ef�ciency values of 43% for ee, 55% for eµ and 59% for µµ. The new
�ducial region represented a signi�cant improvement over the previous µµ analysis in essentially all
criteria. The lowest �ducial ef�ciency we had for µµ was 59%, as mentioned, and was a signi�cant

improvement on the previous value of 43.9%, which allows a stronger limit to be set. The leakage

values were between 1.5% and 3.5% depending on the �nal state and again this improved on the old
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values of 6%. Most importantly there was a substantial reduction in the variation between models.

In the µµ channel the difference between the highest and lowest values was roughly 14%, much

lower than the 29% from the previous analysis.

Table 2: Lepton cuts de�ning the �ducial region.

Electron requirement Muon requirement

Leading lepton pT pT > 25 GeV pT > 20 GeV
Sub-leading lepton pT pT > 20 GeV pT > 20 GeV
Lepton η |η| < 1.37 or 1.52 < |η| < 2.47 |η| < 2.5

Isolation pcone0.3T /pT < 0.1
pcone0.4T /pT < 0.06 and
pcone0.4T < 4 GeV+ 0.02× pT

Using these values for εfid and (4.4), we calculated the set of observed limits in Table 3 - note the

expected limits are the limits set with the background only hypothesis derived from our background

estimates. Again these values come from [41]. A theorist can calculate the prediction of their model

in the �ducial region and use these values to see if it has been excluded.

Table 3: Expected and observed limits on the cross section for same sign lepton pairs from new

physics in the �ducial region.

95% C.L. upper limit [fb]

Mass range expected observed expected observed expected observed

e±e± e±µ± µ±µ±

m > 15 GeV 45.5+14.5
−11.5 41.5 56.2+23.3

−14.5 64.1 24.0+8.9
−6.0 29.8

m > 100 GeV 24.1+8.9
−6.2 23.4 23.0+9.1

−6.7 31.2 12.2+4.5
−3.0 15.0

m > 200 GeV 8.8+3.4
−2.1 7.5 8.4+3.4

−1.7 9.8 4.3+1.8
−1.1 6.7

m > 300 GeV 4.5+1.8
−1.3 3.9 4.1+1.8

−0.9 4.6 2.4+0.9
−0.7 2.6

m > 400 GeV 2.9+1.1
−0.8 2.4 3.0+1.0

−0.8 3.1 1.7+0.6
−0.5 1.7
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4.3.6 Optimising for the DCH

In the second paper, the above model independent analysis was optimised for the speci�c case of

the HL and HR from the left-right symmetric model. As we mentioned the HL behaves identically

to the ZBM k as far as this analysis is concerned. Now the cross section to same sign leptons in

this model is dependent on the mass of DCH and so due to non-observation of such events in the

above analysis we can put a limit on the mass of these particles.

The bene�t of having the experimentalists perform a search for a speci�c model is that we have

access to the event selection criteria and thus do not need to go through the �ducial region step.

This way we do not get the same reduction in the limit that εfid introduces. The basic idea is that we
now compare the limit on the cross section derived in small invariant mass windows with the cross

section predicted by the left-right symmetric model for different masses. In this way we derived an

expected and observed limit on the cross section times branching ratio, shown in Figure 4.6, and

accordingly the limit on new particle masses, as in Table 4 (both taken from [42]). We have not

included the limits on HR in the table as they are not interesting for our purposes. Note that the

limit obtained of course depends on the branching fraction to the different �nal states, which is a

free parameter in the models. Nonetheless this is usually constrained by experimental limits from,

for example, ββ0ν.

Table 4: Lower mass limits at 95% CL on HL for different �nal states and branching ratios. Note

that these limits are completely transferable to the ZBM k.

BR(H±±
L → `±`′±) 95% CL lower limit onm(H±±

L ) [GeV]

e±e± µ±µ± e±µ±

exp. obs. exp. obs. exp. obs.

100% 407 409 401 398 392 375

33% 318 317 317 290 279 276

22% 274 258 282 282 250 253

11% 228 212 234 216 206 190
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Figure 4.6: 95% CL upper limit on the cross section times branching ratio for pair production of

the DCH decaying into (a) ee, (b) µµ, and (c) eµ pairs.
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5 Conclusion

The discovery at the LHC of a Higgs-like resonance at 126 GeV shows that we are on the verge

of entering the regime of physics beyond the SM: the BSM era. This is the realm of famous

problems such as dark matter, matter-antimatter asymmetry, uni�cation of gauge forces or quantum

gravity. Even if not as well known, there are good reasons to see the problem of neutrino mass as

a preeminent BSM concern. There is direct experimental evidence that neutrinos have mass - in

blatant con�ict with the SM prediction - and there is already a dense forest of neutrino mass models

seeking to cure this defect. Nevertheless Babu and Leung's proposal of approaching the problem

from the perspective of effective operators rather than models may well provide a simple route

through the landscape.

A key theme of this thesis has been contributing to the growing work on effective neutrino mass

operators, which has already been considerably built on by the work of de Gouv�ea and Jenkins as

well as Volkas and Angel. In section 2 we took the �rst steps towards the goal of excluding all

dimension 11 operators. Our initial aim of ruling out models from two arbitrary 11D operators was

revealed to be naive. It appears that 11D operators are tightly coupled to their lower dimension

counterparts and generating a model that is truly 11D in origin is more challenging than initially

thought; indeed it may not even be possible and this is further work that must be investigated. In

the process of analysing a model from O68b and O31a , we needed to evaluate two loop integrals

exactly. The details of this have been presented in appendices A and B. From appendix B we

learn that two loop integrals with odd numerators need not vanish. This seems in con�ict with a

conclusion reached by de Gouv�ea and Jenkins and may necessitate a reconsideration of their scale

of new physics analysis for several operators.

In section 3 we detailed a number of constraints that exist on the pathway Volkas and Angel

outlined for going from effective operators to models. The most interesting conclusion of these

various restrictions is that it appears the possible models that can be realised from 9D operators is

not as numerous as �rst expected. If 11D operators are truly ruled out, this bodes well for moving

through their 9D counterparts quickly.

Finally in section 4 we outlined how the LHC can be exploited as a powerful source of con-

straints on neutrino mass models. We did this by analysing the Zee-Babu Model k particle and

demonstrating limits on it were equivalent to limits on the left handed doubly charged Higgs from

the left-right symmetric model. Through playing a part in this analysis we were able to contribute

towards a mass limit on the k particle, displayed in Table 4. The high reach of such limits demon-

strates that LHC data will be an important counterpart to precision data when it comes to ruling out

models and thus operators.

The combination of a systematic approach to neutrino mass models with new experimental data

from the LHC and upcoming precisions experiments, is a strong reason to be optimistic about the

resolution of this SM shortcoming. This is an exciting realisation not just for neutrino physics, but

for physics as a whole. As seen, essentially all neutrino mass models introduce new particles at

higher energy scales. If we are able to �gure out the one used by nature, then understanding such

particles will likely act as a portal to new BSM phenomena and potentially even more discoveries.
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A Techniques for Evaluating Two Loop Integrals

In this appendix we outline the details of how to calculate two loop integrals. In order to do this the

notation and work of van der Bij and Veltman will be utilised [45]. This approach was motivated

by its application to an exact determination of the Zee-Babu Model diagram by McDonald and

McKellar [46].

The general problem contains two parts: 1. Reduce the integral to simpler integrals of the form

(2m|m1|m2) - the notation will be explained shortly; and 2. Exactly evaluate this simpler integral.

There are two circumstances where this procedure can fail at stage 1. If the integral contains a

mass that is repeated more than once in the same loop and this occurs for both loops (e.g. the

p loop has m1 appearing twice and the q loop has m2 appearing twice), then the integral cannot

easily be reduced. This is highly unlikely to arise in neutrino mass models and so is not discussed

here further, but some details are mentioned in [45]. The other situation in which this can fail is if

there is an odd numerator, e.g. p · q as in M2
ab from section 2. This situation is a bit more dif�cult

and has not been evaluated in the literature. Appendix B provides a derivation for the integral

we are interested in and this should provide suf�cient guidance for evaluating such integrals more

generally.

Reduction to (2m|m1|m2)

The �rst step is to remove any terms on the numerator. Even terms can be removed through repeated

use of the following trick: p2 = (p2 +m2)−m2. Odd terms are discussed in appendix B. Once the

numerators have been removed it is convenient to utilise the following notation from [45]:

(M11, ...,M1n1 |M21, ...,M2n3 |M31, ...,M3n3)

≡
∫
dnp

∫
dnq

n1∏
i=1

n2∏
j=1

n3∏
k=1

1

p2 +M2
1i

1

p2 +M2
1i

1

q2 +M2
2i

1

(p+ q)2 +M2
3i

,
(A.1)

where n is used rather than 4 as we will evaluate the divergences in the integral using dimensional

regularization. Now we can see that (2m|m1|m2) is just a two loop integral, where the 2m is

shorthand form,m.

Once we have the integral in the form of (A.1) there are two steps to reduce it to the desired

form. Firstly we reduce the integral to terms of the form (m|m1|m2) through repeated use of the

following expression and its obvious generalisations:

(m,m0|m1|m2) =
1

m2 −m2
0

[(m0|m1|m2)− (m|m1|m2)] , (A.2)

which is just partial fractions. Secondly we turn these integrals into the desired form using:

(m0|m1|m2) = −
[
m2

0 (2m0|m1|m2) +m2
1 (2m1|m0|m2) +m2

2 (2m2|m0|m1)
]
, (A.3)
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which can be proven using 't Hooft's partial p formula [47]. Now the problem has been reduced to

evaluating (2m|m1|m2).

Determination of (2m|m1|m2)

To begin with recall:

(2m|m1|m2) ≡
∫
dnp

∫
dnq

1

(p2 +m2)2
1

(q2 +m2
1)

1(
[p+ q]2 +m2

2

) (A.4)

This integral has been exactly evaluated in the literature. Unfortunately there is some disagreement

in the result, compare [45] and [46]. In order to determine which to use key parts of the calculation

were repeated. Even though this may appear a relatively simple two loop integral, the calculation

is quite in depth and we just provide a rough outline of the steps involved here. The �rst step is to

perform the p and q integrations. This can be done with the following four expressions:

1
aαbβ

= Γ(α+β)
Γ(α)Γ(β)

∫ 1

0
dx xα−1(1−x)β−1

(ax+b[1−x])α+β∫
dnt 1

t2+m2 = iπn/2 Γ(2−n/2)
Γ(2)

1

(m2)2−n/2∫
dnp p2

(p2+m2)5−n/2 = iπn/2 n
2

Γ(4−n)
Γ(5−n/2)

1
(m2)4−n∫

dnp 1

(p2+m2)5−n/2 = iπn/2 n
2

Γ(5−n)
Γ(5−n/2)

1
(m2)5−n ,

(A.5)

where Γ is the gamma function. The �rst expression here is just the generalised Feynman parameter

formula [48] and the last three are standard integrals [47]. After using these and a bit of algebra we

conclude

(2m|m1|m2) =
−π4(πm2)

n−4
Γ(2−n/2)

Γ(3−n/2)

∫ 1

0
dx

∫ 1

0
[x (1− x)]n/2−2 y (1− y)2−n/2

×
[
Γ (5− n) µ2

(y+µ2(1−y))5−n + n
2
Γ (4− n) 1

(y+µ2(1−y))4−n

]
,

(A.6)

where the x and y integrals originate from using the Feynman parameter expression twice and µ2

is a simplifying expression introduced, de�ned by

µ2 ≡ ax+ b (1− x)

x (1− x)
, a ≡ m2

1

m2
, b ≡ m2

2

m2
(A.7)

(A.6) should make it apparent why it was necessary to evaluate the integrals in nD rather than 4D

- naively setting n = 4 gives expressions like Γ (0), which diverge. This suggests (2m|m1|m2)
contains divergent terms, but this should have been expected: there is only a single q propagator
and standard cutoff regularizing shows such integrals should be log divergent. What should be

convergent is the total contribution of all these integrals and con�rming all the divergent terms

cancel is a good cross check against algebraic mistakes.

In order to simplify (A.6) we set n = 4 + ε and keep only term less than O (ε) as when we

eventually take ε→ 0 such terms vanish. Then we use the following two asymptotic expressions
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[f (x)]ε = 1 + ε log [f (x)] + 1
2
(log [εf (x)])2 +O (ε3)

Γ (ε) = 1
ε
− γE + ε

(
1
12
π2 + 1

2
γ2E

)
+O (ε2) ,

(A.8)

where γE is the Euler-Mascheroni constant. Using these one can break up (A.6) into separate

integrals that can be evaluated, taking care to ensure all terms of order less than ε are retained when
everything is brought back together. Although this involves a lot of algebra, by the usual miracle

of Feynman diagram calculations this eventually simpli�es to give

(2m|m1|m2) = π4
[
− 2

ε2
+ 1

ε
(1− 2γE − 2 log [πm2])

]
+π4

[
−1

2
− 1

12
π2 + γE − γ2E + (1− 2γE) log [πm

2]− log2 [πm2]− f (a, b)
]
+O (ε) ,

(A.9)

where we have de�ned

f (a, b) =

∫ 1

0

dx

[
Li2

(
1− µ2

)
− µ2 log µ2

1− µ2

]
(A.10)

and Li2 is the dilogarithm function de�ned by:

Li2 (x) ≡
∫ x

0

log [1− y]

y
dy (A.11)

The evaluation of f (a, b) requires further work, but before doing this it is worth pointing out what
(A.9) tells us. As alluded to above we can now explicitly see that (2m|m1|m2) is a divergent

integral and the divergence is not simply constant, but rather depends on m also. The convergence

of the integral cannot depend on certain choices of the masses and so the divergences must cancel

between terms with the same masses in the p integral. We can then just treat all terms in (A.9)

- except for f , which depends on all the masses - as a function of m, say g (m) 6= 0. Then the

convergence of the integral ensures not only the divergent terms cancel, but that everything in (A.9)

except for f cancels. This makes sense as many of these terms are proportional to γE , which is a

relic of our choice of regularization technique and so the physical part of the integral should not

depend on it.

Accordingly once we have ensured our model is convergent, taking ε → 0 is equivalent to

treating the integral using the following `effective' expression:

(2m|m1|m2)Eff ≡ −π4f (a, b) (A.12)

(A.12) is deceptively simple, there is still a lot of work to do to put f in a form that we can put into

Mathematica. After calculating the integrals, one can �nally show that

(2m|m1|m2)Eff = π4

2
log a log b

+π4

2

(
a+b−1

c

) [
Li2

(
−x2

y1

)
+ Li2

(
−y2
x1

)
− Li2

(
−x1

y2

)
− Li2

(
−y1
x2

)
+Li2

(
b−a
x2

)
+ Li2

(
a−b
y2

)
− Li2

(
b−a
x1

)
− Li2

(
a−b
y1

)]
,

(A.13)
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where a and b are as in (A.7) and c, x1,2 and y1,2 are de�ned by:

c ≡
√
1− 2 (a+ b) + (a− b)2

x1,2 ≡ (1 + b− a± c) /2
y1,2 ≡ (1 + a− b± c) /2

(A.14)

There are actually a number of different ways that (A.13) can be written - see [45], where ap-

proximate expressions for the integral in different mass limits is also provided. The form written,

however, is the most useful for computing values in Mathematica as other expressions involve log-

arithms that will give imaginary answers without a judicious branch choice. Accordingly we now

have an exact expression for (2m|m1|m2) as desired.

B Evaluating p · q Type Two Loop Integrals
In appendix A we saw how to evaluate two loop integrals when the numerator is even. The problem

involving odd numerators has been considered in the literature, but only in the case of �nite external

momenta [49]. This case is relevant if one is, for example, considering the second order Higgs

correction to the ρ-parameter [45]. For a neutrino mass, however, we want the rest mass and so

need the zero external momenta case. One cannot simply take a limit between the two as the

expressions are typically divergent in this limit.

Accordingly we here present the details of how to evaluate the p · q integral that appeared

in section 2.1.2, where it was called I2Bcd . This should provide suf�cient detail to evaluate such

integrals in general. To begin with we want to get rid of the numerator which we can do using:

p · q = 1

2

[
(p+ q)2 +m2

]
− 1

2
p2 − 1

2
q2 − 1

2
m2 (B.1)

This means we will break the integral into four separate integrals. The integral with the p2 term
in the numerator can simply be merged with I2Acd , which we already independently checked to

be convergent. Thus the remaining terms must be convergent amongst themselves. Using q2 =
(q2 +m2

S2)−m2
S2 and the notation from appendix A, the remaining terms in I2Bcd reduce to:

1
2
(mc,mF1,mS1|mS3|md) +

1
2H

(mc,mF1,mS1|mS2,mS3|md)

−1
2

(
dnp 1

p2+m2
c

1
p2+m2

F1

1
p2+m2

S1

)(
dnq 1

q2+m2
S2

1
q2+m2

S3

)
(B.2)

where H = (m2
d − m2

S2)
−1. Using appendix A we know how to calculate the two loop integrals

in the �rst line. The problem is the expression in the second line, which is a product of decoupled

one loop integrals. Naively this appears simple, as one loop integrals are much better understood

than two loop integrals. Nevertheless the problem is that when taking the product of two one loop

integrals, terms ofO (ε−1) on one side can combine with termsO (ε) on the other to give convergent
contributions and one loop integrals are not usually evaluated up to this order.

The one loop integrals in (B.2) can be reduced to several integrals of a single denominator using

partial fractions. Then using standard techniques for calculating divergent one loop integrals, see

e.g. [50], one can show:
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∫
d4+εt

1

t2 −m2
= −iπ2m2

(
πm2

)ε/2
Γ (−1− ε/2) (B.3)

Next we can use the following expansions for small ε:

(πm2)
ε/2

= 1 + ε
2
log (πm2) + ε2

8
log2 (πm2) +O (ε3)

Γ (−1− ε/2) = 2
ε
− ψ (2) + ε

4

(
π2

3
+ ψ2 (2)− ψ′ (2)

)
+O (ε2) ,

(B.4)

where ψ is the Euler Digamma function, in particular ψ (2) = 1 − γE and ψ′ (2) = π2/6 − 1.
Accordingly we have:∫

d4+εt
1

t2 −m2
= iπ2m2

[
−2

ε
+ γm − ε

4

(
π2

6
+ 1 + γ2m

)]
+O

(
ε2
)
, (B.5)

where we have de�ned γm ≡ 1−γE − log (πm2). From here one can show the second line of (B.2)

can be evaluated as:

π4

ε
[DGm2

S1γmS1
−DEm2

F1γmF1
+ EGm2

cγmc ]
+π4

[
1
4

(
DEm2

F1γ
2
mF1

− EGm2
cγ

2
mc

−DGm2
S1γ

2
mS1

)
+ 1

2
(m2

S3γmS3
−m2

S2γmS2
)

× (ADGm2
S1γmS1

− ADEm2
F1γmF1

+ AEGm2
cγmc)] +O (ε) ,

(B.6)

where A = (m2
S2 −m2

S3)
−1, D = (m2

F1 −m2
S1)

−1, E = (m2
c −m2

F1)
−1 and G = (m2

c −m2
S1)

−1.

Carefully combining this with the two loop integrals provides a convergent result and we �nd that

(B.2) evaluates to:

1
2

[
π4ADEG

{
m2

F1m
2
S1 log

(
m2

S1

m2
F1

) [
m2

S2 log
(
πm2

S2

)
−m2

S3 log
(
πm2

S3

)]
+m2

cm
2
F1 log

(
m2

F1

m2
c

) [
m2

S2 log
(
πm2

S2

)
−m2

S3 log
(
πm2

S3

)]
+m2

S1m
2
c log

(
m2

c

m2
S1

) [
m2

S2 log
(
πm2

S2

)
−m2

S3 log
(
πm2

S3

)]}
+m2

S1ADG
{

1
H (2mS1|mS2|md)− 1

I (2mS1|mS3|md)
}

−m2
F1ADE

{
1
H (2mF1|mS2|md)− 1

I (2mF1|mS3|md)
}

+m2
cAEG

{
1
H (2mc|mS2|md)− 1

I (2mc|mS3|md)
}

+m2
S3

A
2I {DG (2mS3|mS1|md)−DE (2mS3|mF1|md) + EG (2mS3|mc|md)}

+m2
S2

A
2H {−DG (2mS2|mS1|md) +DE (2mS2|mF1|md)− EG (2mS2|mc|md)}

+m2
d
A
2I {DG (2md|mS1|mS3)−DE (2md|mF1|mS3) + EG (2md|mc|mS3)}

+m2
d

A
2H {−DG (2md|mS1|mS2) +DE (2md|mF1|mS2)− EG (2md|mc|mS2)}

]

(B.7)

where I = (m2
d −m2

S3)
−1 and as this is convergent, all terms of the form (2m|m1|m2) should be

replaced with their `effective' part as de�ned in appendix A. One feature of this expression that

may appear unusual is the presence of a dimensionful argument in the logarithms. The correct

way to remove this is to make all couplings dimensionless, and then the masses removed from the

couplings combine with the arguments to form dimensionless quantities, see e.g. [51]. Nonetheless

the result obtained is numerically identical and so was not calculated.
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C Time-symmetric Quantization and Hawking Radiation

In addition to the above work, the author also collaborated with Dr Kobakhidze on a project where

we were able to show that the standard time-asymmetric quantization of �elds in QFT is a necessary

condition to the existence of Hawking Radiation [52]. We did this by demonstrating that in a theory

with a time-symmetric quantization, Unruh radiation - a conceptual precursor to the Hawking effect

- does not arise. This work was motivated by the fact that while Hawking radiation has a number

of attractive features, such as the suggestive consistency it provides to Bekenstein's black hole

entropy, it also leads to a number of theoretical problems. These include the famous black hole

information loss paradox, which arises from the loss of unitarity at the horizon. Accordingly we

were interested in seeing whether a consistent framework could be constructed without Hawking

radiation and thereby determining what are the necessary conditions in the canonical approach that

give rise to this effect.

Unfortunately there is not space here to provide all the details but the basics are as follows. We

considered the problem from the simpli�ed perspective of a free massless scalar �eld and quantised

it as follows:

φ̂(t, x) =

∫
dk

(
fkÂk + f ∗

k Â
†
k

)
, (C.1)

where fk =
1

2π
√

2|k|
e−i(|k|t−kx) and instead of the standard Âk = âk, we take

Âk =
1√
2

(
âk + α̂†

−k

)
,
[
Â†

k ≡ (Âk)
†
]
. (C.2)

This choice implies a manifest time symmetry of t→ −t in φ̂(t, x) as opposed to the standard anti-
unitary transformation. One can then show the creation â†k, α̂

†
k and annihilation âk, α̂k operators

obey the following relations:

[âk, â
†
k′ ] = 2πδ(k − k′), [α̂k, α̂

†
k′ ] = −2πδ(k − k′) (C.3)

Furthermore one can then calculate all basic features of the free �eld theory and demonstrate that

this is a consistent and causal approach. The key point, however, is that when one calculates the

Minkowski vacuum expectation value of the particle number operator for an accelerated observer

(N̂R), we �nd:

〈0M |N̂R|0M〉 = 0, (C.4)

instead of the traditional thermal term famous from the Unruh effect. When one goes through the

calculation in detail, it turns out that the normal thermal term is exactly cancelled by an opposite

sign term from the α̂ and α̂† operators. The sign difference originates from the negative in the

second commutator of (C.3).
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